IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1565-d114511.html
   My bibliography  Save this article

Comparative Analysis and Optimization of Power Loss Based on the Isolated Series/Multi Resonant Three-Port Bidirectional DC-DC Converter

Author

Listed:
  • Bo Chen

    (School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China)

  • Ping Wang

    (School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China)

  • Yifeng Wang

    (School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China)

  • Wei Li

    (School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China)

  • Fuqiang Han

    (School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China)

  • Shuhuai Zhang

    (School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China)

Abstract

Based on the loss distribution and efficiency analysis, a comparative study between a series resonant three-port bidirectional DC-DC converter (SR-TBC) and a multi-resonant three-port bi-directional DC-DC converter (MR-TBC) is reported here. By using the Fourier equivalent analysis method in hand, the resonant current, switching current expressions, zero voltage soft switching (ZVS) conditions of MR-TBC and SR-TBC are deduced. Besides, in consideration of efficiency and soft switching aspects, the loss models of main power components and resonant elements are integrated and optimized for both topologies. Their loss distributions are established, and the different effects derived from the adoption of SiC MOSFET and Si MOSFET on the converter efficiency are discussed. Finally, to verify the theoretical analyses, comparative experiments under diverse load states are conducted based on the prototypes of the MR-TBC and SR-TBC. The obtained results demonstrate that the MR-TBC successfully broadens the ZVS range and thus achieves higher efficiency along the entire load range.

Suggested Citation

  • Bo Chen & Ping Wang & Yifeng Wang & Wei Li & Fuqiang Han & Shuhuai Zhang, 2017. "Comparative Analysis and Optimization of Power Loss Based on the Isolated Series/Multi Resonant Three-Port Bidirectional DC-DC Converter," Energies, MDPI, vol. 10(10), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1565-:d:114511
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1565/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1565/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Neng & Sutanto, Danny & Muttaqi, Kashem M., 2016. "A review of topologies of three-port DC–DC converters for the integration of renewable energy and energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 388-401.
    2. Jong-Yul Kim & Hak-Man Kim & Seul-Ki Kim & Jin-Hong Jeon & Heung-Kwan Choi, 2011. "Designing an Energy Storage System Fuzzy PID Controller for Microgrid Islanded Operation," Energies, MDPI, vol. 4(9), pages 1-18, September.
    3. Zhun Meng & Yi-Feng Wang & Liang Yang & Wei Li, 2017. "Analysis of Power Loss and Improved Simulation Method of a High Frequency Dual-Buck Full-Bridge Inverter," Energies, MDPI, vol. 10(3), pages 1-18, March.
    4. Zhixiang Ling & Hui Wang & Kun Yan & Jinhao Gan, 2016. "Optimal Isolation Control of Three-Port Active Converters as a Combined Charger for Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-15, September.
    5. Eun-Chul Kang & Euy-Joon Lee & Mohamed Ghorab & Libing Yang & Evgueniy Entchev & Kwang-Seob Lee & Nam-Jin Lyu, 2016. "Investigation of Energy and Environmental Potentials of a Renewable Trigeneration System in a Residential Application," Energies, MDPI, vol. 9(9), pages 1-17, September.
    6. María Pérez-Ortiz & Silvia Jiménez-Fernández & Pedro A. Gutiérrez & Enrique Alexandre & César Hervás-Martínez & Sancho Salcedo-Sanz, 2016. "A Review of Classification Problems and Algorithms in Renewable Energy Applications," Energies, MDPI, vol. 9(8), pages 1-27, August.
    7. Jiefeng Hu & Ka Wai Eric Cheng, 2017. "Predictive Control of Power Electronics Converters in Renewable Energy Systems," Energies, MDPI, vol. 10(4), pages 1-14, April.
    8. Cheng-Shan Wang & Wei Li & Yi-Feng Wang & Fu-Qiang Han & Bo Chen, 2017. "A High-Efficiency Isolated LCLC Multi-Resonant Three-Port Bidirectional DC-DC Converter," Energies, MDPI, vol. 10(7), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianxu Huo & Ke Xu & Ruixin Liu & Xi Chen & Zhanchun Li & Haiyun Yan, 2019. "A Structure-Reconfigurable Soft-Switching DC-DC Converter for Wide-Range Applications," Energies, MDPI, vol. 12(15), pages 1-25, July.
    2. Shu-huai Zhang & Yi-feng Wang & Bo Chen & Fu-qiang Han & Qing-cui Wang, 2018. "Studies on a Hybrid Full-Bridge/Half-Bridge Bidirectional CLTC Multi-Resonant DC-DC Converter with a Digital Synchronous Rectification Strategy," Energies, MDPI, vol. 11(1), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng-Shan Wang & Wei Li & Yi-Feng Wang & Fu-Qiang Han & Bo Chen, 2017. "A High-Efficiency Isolated LCLC Multi-Resonant Three-Port Bidirectional DC-DC Converter," Energies, MDPI, vol. 10(7), pages 1-22, July.
    2. Wenzheng Xu & Nelson Hon Lung Chan & Siu Wing Or & Siu Lau Ho & Ka Wing Chan, 2017. "A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range," Energies, MDPI, vol. 10(10), pages 1-17, October.
    3. Cheng-Shan Wang & Wei Li & Yi-Feng Wang & Fu-Qiang Han & Zhun Meng & Guo-Dong Li, 2017. "An Isolated Three-Port Bidirectional DC-DC Converter with Enlarged ZVS Region for HESS Applications in DC Microgrids," Energies, MDPI, vol. 10(4), pages 1-23, April.
    4. Prince Waqas Khan & Yung-Cheol Byun & Sang-Joon Lee & Dong-Ho Kang & Jin-Young Kang & Hae-Su Park, 2020. "Machine Learning-Based Approach to Predict Energy Consumption of Renewable and Nonrenewable Power Sources," Energies, MDPI, vol. 13(18), pages 1-16, September.
    5. Daniel Cardoso & Daniel Nunes & João Faria & Paulo Fael & Pedro D. Gaspar, 2023. "Intelligent Micro-Cogeneration Systems for Residential Grids: A Sustainable Solution for Efficient Energy Management," Energies, MDPI, vol. 16(13), pages 1-21, July.
    6. Alvaro Furlani Bastos & Surya Santoso, 2021. "Optimization Techniques for Mining Power Quality Data and Processing Unbalanced Datasets in Machine Learning Applications," Energies, MDPI, vol. 14(2), pages 1-21, January.
    7. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    8. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    9. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    10. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    11. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    12. Khalfan Al Kharusi & Abdelsalam El Haffar & Mostefa Mesbah, 2022. "Fault Detection and Classification in Transmission Lines Connected to Inverter-Based Generators Using Machine Learning," Energies, MDPI, vol. 15(15), pages 1-23, July.
    13. Burgaç, Alper & Yavuz, Hakan, 2019. "Fuzzy Logic based hybrid type control implementation of a heaving wave energy converter," Energy, Elsevier, vol. 170(C), pages 1202-1214.
    14. Yimin Lu & Haimeng Zhu & Xianfeng Huang & Robert D. Lorenz, 2019. "Inverse-System Decoupling Control of DC/DC Converters," Energies, MDPI, vol. 12(1), pages 1-19, January.
    15. Kuei-Hsiang Chao & Min-Sen Yang & Chin-Pao Hung, 2013. "Islanding Detection Method of a Photovoltaic Power Generation System Based on a CMAC Neural Network," Energies, MDPI, vol. 6(8), pages 1-18, August.
    16. Ratnam Kamala Sarojini & Kaliannan Palanisamy & Enrico De Tuglie, 2022. "A Fuzzy Logic-Based Emulated Inertia Control to a Supercapacitor System to Improve Inertia in a Low Inertia Grid with Renewables," Energies, MDPI, vol. 15(4), pages 1-23, February.
    17. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim & Huy Nguyen-Duc, 2018. "Direct Phase Angle and Voltage Amplitude Model Predictive Control of a Power Converter for Microgrid Applications," Energies, MDPI, vol. 11(9), pages 1-21, August.
    18. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    19. Shu-huai Zhang & Yi-feng Wang & Bo Chen & Fu-qiang Han & Qing-cui Wang, 2018. "Studies on a Hybrid Full-Bridge/Half-Bridge Bidirectional CLTC Multi-Resonant DC-DC Converter with a Digital Synchronous Rectification Strategy," Energies, MDPI, vol. 11(1), pages 1-22, January.
    20. Wolfram Rozas & Rafael Pastor-Vargas & Angel Miguel García-Vico & José Carpio, 2023. "Consumption–Production Profile Categorization in Energy Communities," Energies, MDPI, vol. 16(19), pages 1-27, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1565-:d:114511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.