IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3040-d180745.html
   My bibliography  Save this article

Hybrid Approach for Detecting and Classifying Power Quality Disturbances Based on the Variational Mode Decomposition and Deep Stochastic Configuration Network

Author

Listed:
  • Kewei Cai

    (College of Information Engineering, Dalian Ocean University, Dalian 116023, China
    School of Engineering and Applied Science, Aston University, Birmingham, B4 7ET, UK)

  • Belema Prince Alalibo

    (School of Engineering and Applied Science, Aston University, Birmingham, B4 7ET, UK)

  • Wenping Cao

    (School of Engineering and Applied Science, Aston University, Birmingham, B4 7ET, UK)

  • Zheng Liu

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116023, China)

  • Zhiqiang Wang

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116023, China)

  • Guofeng Li

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116023, China)

Abstract

This paper proposes a novel, two-stage and hybrid approach based on variational mode decomposition (VMD) and the deep stochastic configuration network (DSCN) for power quality (PQ) disturbances detection and classification in power systems. Firstly, a VMD technique is applied to discriminate between stationary and non-stationary PQ events. Secondly, the key parameters of VMD are determined as per different types of disturbance. Three statistical features (mean, variance, and kurtosis) are extracted from the instantaneous amplitude (IA) of the decomposed modes. The DSCN model is then developed to classify PQ disturbances based on these features. The proposed approach is validated by analytical results and actual measurements. Moreover, it is also compared with existing methods including wavelet network, fuzzy and S-transform (ST), adaptive linear neuron (ADALINE) and feedforward neural network (FFNN). Test results have proved that the proposed method is capable of providing necessary and accurate information for PQ disturbances in order to plan PQ remedy actions accordingly.

Suggested Citation

  • Kewei Cai & Belema Prince Alalibo & Wenping Cao & Zheng Liu & Zhiqiang Wang & Guofeng Li, 2018. "Hybrid Approach for Detecting and Classifying Power Quality Disturbances Based on the Variational Mode Decomposition and Deep Stochastic Configuration Network," Energies, MDPI, vol. 11(11), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3040-:d:180745
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3040/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3040/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan-José González-de-la-Rosa & Agustín Agüera-Pérez & José-Carlos Palomares-Salas & Olivia Florencias-Oliveros & José-María Sierra-Fernández, 2018. "A Dual Monitoring Technique to Detect Power Quality Transients Based on the Fourth-Order Spectrogram," Energies, MDPI, vol. 11(3), pages 1-12, February.
    2. María Pérez-Ortiz & Silvia Jiménez-Fernández & Pedro A. Gutiérrez & Enrique Alexandre & César Hervás-Martínez & Sancho Salcedo-Sanz, 2016. "A Review of Classification Problems and Algorithms in Renewable Energy Applications," Energies, MDPI, vol. 9(8), pages 1-27, August.
    3. Marcolino Díaz-Araujo & Aurelio Medina & Rafael Cisneros-Magaña & Amner Ramírez, 2018. "Periodic Steady State Assessment of Microgrids with Photovoltaic Generation Using Limit Cycle Extrapolation and Cubic Splines," Energies, MDPI, vol. 11(8), pages 1-16, August.
    4. Alexandre Lucas & Germana Trentadue & Harald Scholz & Marcos Otura, 2018. "Power Quality Performance of Fast-Charging under Extreme Temperature Conditions," Energies, MDPI, vol. 11(10), pages 1-14, October.
    5. Huaishuo Xiao & Jianchun Wei & Qingquan Li, 2017. "Identification of Combined Power Quality Disturbances Using Singular Value Decomposition (SVD) and Total Least Squares-Estimation of Signal Parameters via Rotational Invariance Techniques (TLS-ESPRIT)," Energies, MDPI, vol. 10(11), pages 1-16, November.
    6. Changhong Deng & Yahong Chen & Jin Tan & Pei Xia & Ning Liang & Weiwei Yao & Yuan-ao Zhang, 2017. "Distributed Variable Droop Curve Control Strategies in Smart Microgrid," Energies, MDPI, vol. 11(1), pages 1-17, December.
    7. Huihui Wang & Ping Wang & Tao Liu, 2017. "Power Quality Disturbance Classification Using the S-Transform and Probabilistic Neural Network," Energies, MDPI, vol. 10(1), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodrigo De A. Teixeira & Werbet L. A. Silva & Guilherme A. P. De C. A. Pessoa & Joao T. Carvalho Neto & Elmer R. L. Villarreal & Andrés O. Salazar & Alberto S. Lock, 2020. "One Cycle Control of a PWM Rectifier a New Approach," Energies, MDPI, vol. 13(20), pages 1-23, October.
    2. Jun Deng & Jun Suo & Jing Yang & Shutao Peng & Fangde Chi & Tong Wang, 2019. "Adaptive Damping Control Strategy of Wind Integrated Power System," Energies, MDPI, vol. 12(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvaro Furlani Bastos & Surya Santoso, 2021. "Optimization Techniques for Mining Power Quality Data and Processing Unbalanced Datasets in Machine Learning Applications," Energies, MDPI, vol. 14(2), pages 1-21, January.
    2. Pu Zhao & Qing Chen & Kongming Sun & Chuanxin Xi, 2017. "A Current Frequency Component-Based Fault-Location Method for Voltage-Source Converter-Based High-Voltage Direct Current (VSC-HVDC) Cables Using the S Transform," Energies, MDPI, vol. 10(8), pages 1-15, July.
    3. Yue Shen & Muhammad Abubakar & Hui Liu & Fida Hussain, 2019. "Power Quality Disturbance Monitoring and Classification Based on Improved PCA and Convolution Neural Network for Wind-Grid Distribution Systems," Energies, MDPI, vol. 12(7), pages 1-26, April.
    4. Wolfram Rozas & Rafael Pastor-Vargas & Angel Miguel García-Vico & José Carpio, 2023. "Consumption–Production Profile Categorization in Energy Communities," Energies, MDPI, vol. 16(19), pages 1-27, October.
    5. Mauro Zucca & Vincenzo Cirimele & Jorge Bruna & Davide Signorino & Erika Laporta & Jacopo Colussi & Miguel Angel Alonso Tejedor & Federico Fissore & Umberto Pogliano, 2021. "Assessment of the Overall Efficiency in WPT Stations for Electric Vehicles," Sustainability, MDPI, vol. 13(5), pages 1-19, February.
    6. Hongyu Li & Ping Ju & Chun Gan & Feng Wu & Yichen Zhou & Zhe Dong, 2018. "Stochastic Stability Analysis of the Power System with Losses," Energies, MDPI, vol. 11(3), pages 1-11, March.
    7. Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
    8. Cheng-Shan Wang & Wei Li & Yi-Feng Wang & Fu-Qiang Han & Bo Chen, 2017. "A High-Efficiency Isolated LCLC Multi-Resonant Three-Port Bidirectional DC-DC Converter," Energies, MDPI, vol. 10(7), pages 1-22, July.
    9. Carlos Ruiz & Carlos M. Alaíz & José R. Dorronsoro, 2020. "Multitask Support Vector Regression for Solar and Wind Energy Prediction," Energies, MDPI, vol. 13(23), pages 1-21, November.
    10. Arcos Jiménez, Alfredo & Zhang, Long & Gómez Muñoz, Carlos Quiterio & García Márquez, Fausto Pedro, 2020. "Maintenance management based on Machine Learning and nonlinear features in wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 316-328.
    11. Artyom V. Gorchakov & Liliya A. Demidova & Peter N. Sovietov, 2023. "Analysis of Program Representations Based on Abstract Syntax Trees and Higher-Order Markov Chains for Source Code Classification Task," Future Internet, MDPI, vol. 15(9), pages 1-28, September.
    12. Chengcheng Gu & Hua Li, 2022. "Review on Deep Learning Research and Applications in Wind and Wave Energy," Energies, MDPI, vol. 15(4), pages 1-19, February.
    13. Prince Waqas Khan & Yung-Cheol Byun & Sang-Joon Lee & Dong-Ho Kang & Jin-Young Kang & Hae-Su Park, 2020. "Machine Learning-Based Approach to Predict Energy Consumption of Renewable and Nonrenewable Power Sources," Energies, MDPI, vol. 13(18), pages 1-16, September.
    14. Delong Cai & Kaicheng Li & Shunfan He & Yuanzheng Li & Yi Luo, 2018. "On the Application of Joint-Domain Dictionary Mapping for Multiple Power Disturbance Assessment," Energies, MDPI, vol. 11(2), pages 1-17, February.
    15. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    16. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    17. Khalfan Al Kharusi & Abdelsalam El Haffar & Mostefa Mesbah, 2022. "Fault Detection and Classification in Transmission Lines Connected to Inverter-Based Generators Using Machine Learning," Energies, MDPI, vol. 15(15), pages 1-23, July.
    18. Wang, Shouxiang & Chen, Haiwen, 2019. "A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network," Applied Energy, Elsevier, vol. 235(C), pages 1126-1140.
    19. Bruno Pinto & Filipe Barata & Constantino Soares & Carla Viveiros, 2020. "Fleet Transition from Combustion to Electric Vehicles: A Case Study in a Portuguese Business Campus," Energies, MDPI, vol. 13(5), pages 1-24, March.
    20. Ruijin Zhu & Xuejiao Gong & Shifeng Hu & Yusen Wang, 2019. "Power Quality Disturbances Classification via Fully-Convolutional Siamese Network and k-Nearest Neighbor," Energies, MDPI, vol. 12(24), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3040-:d:180745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.