IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1396-d1356880.html
   My bibliography  Save this article

Efficient Framework to Manipulate Data Compression and Classification of Power Quality Disturbances for Distributed Power System

Author

Listed:
  • Mariana Syamsudin

    (Department of Electrical Engineering, Politeknik Negeri Pontianak, Pontianak 78124, Indonesia)

  • Cheng-I Chen

    (Department of Electrical Engineering, National Central University, Taoyuan 320, Taiwan)

  • Sunneng Sandino Berutu

    (Department of Information and Technology, Immanuel Christian University, Yogyakarta 55571, Indonesia)

  • Yeong-Chin Chen

    (Department of Computer Science and Information Engineering, Asia University, Taichung 413, Taiwan)

Abstract

There is some risk of power quality disturbances at many stages of production, transformation, distribution, and energy consumption. The cornerstone for dealing with power quality problems is the characterization of power quality disturbances (PQDs). However, past research has focused on a narrow topic: noise disruption, overfitting, and training time. A new strategy is suggested to address this problem that combines efficient one-dimensional dataset compression with the convolutional neural network (CNN) classification algorithm. First, three types of compression algorithms: wavelet transform, autoencoder, and CNN, are proposed to be evaluated. According to the IEEE-1159 standard, the synthetic dataset was built with fourteen different PQD types. Furthermore, the PQD classification procedure integrated compressed data with the CNN classification algorithm. Finally, the suggested method demonstrates that combining CNN compression and classification methods can efficiently recognize PQDs. Even in noisy environments, PQD signal processing achieved up to 98.25% accuracy and managed the overfitting.

Suggested Citation

  • Mariana Syamsudin & Cheng-I Chen & Sunneng Sandino Berutu & Yeong-Chin Chen, 2024. "Efficient Framework to Manipulate Data Compression and Classification of Power Quality Disturbances for Distributed Power System," Energies, MDPI, vol. 17(6), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1396-:d:1356880
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1396/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1396/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dash, P.K. & Prasad, Eluri N.V.D.V. & Jalli, Ravi Kumar & Mishra, S.P., 2022. "Multiple power quality disturbances analysis in photovoltaic integrated direct current microgrid using adaptive morphological filter with deep learning algorithm," Applied Energy, Elsevier, vol. 309(C).
    2. María Pérez-Ortiz & Silvia Jiménez-Fernández & Pedro A. Gutiérrez & Enrique Alexandre & César Hervás-Martínez & Sancho Salcedo-Sanz, 2016. "A Review of Classification Problems and Algorithms in Renewable Energy Applications," Energies, MDPI, vol. 9(8), pages 1-27, August.
    3. Xiaoyao Huang & Tianbin Hu & Chengjin Ye & Guanhua Xu & Xiaojian Wang & Liangjin Chen, 2019. "Electric Load Data Compression and Classification Based on Deep Stacked Auto-Encoders," Energies, MDPI, vol. 12(4), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prince Waqas Khan & Yung-Cheol Byun & Sang-Joon Lee & Dong-Ho Kang & Jin-Young Kang & Hae-Su Park, 2020. "Machine Learning-Based Approach to Predict Energy Consumption of Renewable and Nonrenewable Power Sources," Energies, MDPI, vol. 13(18), pages 1-16, September.
    2. Alvaro Furlani Bastos & Surya Santoso, 2021. "Optimization Techniques for Mining Power Quality Data and Processing Unbalanced Datasets in Machine Learning Applications," Energies, MDPI, vol. 14(2), pages 1-21, January.
    3. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    4. Khalfan Al Kharusi & Abdelsalam El Haffar & Mostefa Mesbah, 2022. "Fault Detection and Classification in Transmission Lines Connected to Inverter-Based Generators Using Machine Learning," Energies, MDPI, vol. 15(15), pages 1-23, July.
    5. Wolfram Rozas & Rafael Pastor-Vargas & Angel Miguel García-Vico & José Carpio, 2023. "Consumption–Production Profile Categorization in Energy Communities," Energies, MDPI, vol. 16(19), pages 1-27, October.
    6. Antonio E. Saldaña-González & Andreas Sumper & Mònica Aragüés-Peñalba & Miha Smolnikar, 2020. "Advanced Distribution Measurement Technologies and Data Applications for Smart Grids: A Review," Energies, MDPI, vol. 13(14), pages 1-34, July.
    7. Vattanak Sok & Sun-Woo Lee & Sang-Hee Kang & Soon-Ryul Nam, 2022. "Deep Neural Network-Based Removal of a Decaying DC Offset in Less Than One Cycle for Digital Relaying," Energies, MDPI, vol. 15(7), pages 1-14, April.
    8. Nilsa Duarte da Silva Lima & Irenilza de Alencar Nääs & João Gilberto Mendes dos Reis & Raquel Baracat Tosi Rodrigues da Silva, 2020. "Classifying the Level of Energy-Environmental Efficiency Rating of Brazilian Ethanol," Energies, MDPI, vol. 13(8), pages 1-16, April.
    9. Raffaele Cioffi & Marta Travaglioni & Giuseppina Piscitelli & Antonella Petrillo & Fabio De Felice, 2020. "Artificial Intelligence and Machine Learning Applications in Smart Production: Progress, Trends, and Directions," Sustainability, MDPI, vol. 12(2), pages 1-26, January.
    10. Hongyu Li & Ping Ju & Chun Gan & Feng Wu & Yichen Zhou & Zhe Dong, 2018. "Stochastic Stability Analysis of the Power System with Losses," Energies, MDPI, vol. 11(3), pages 1-11, March.
    11. Kewei Cai & Belema Prince Alalibo & Wenping Cao & Zheng Liu & Zhiqiang Wang & Guofeng Li, 2018. "Hybrid Approach for Detecting and Classifying Power Quality Disturbances Based on the Variational Mode Decomposition and Deep Stochastic Configuration Network," Energies, MDPI, vol. 11(11), pages 1-18, November.
    12. Sun-Bin Kim & Vattanak Sok & Sang-Hee Kang & Nam-Ho Lee & Soon-Ryul Nam, 2019. "A Study on Deep Neural Network-Based DC Offset Removal for Phase Estimation in Power Systems," Energies, MDPI, vol. 12(9), pages 1-19, April.
    13. Sunme Park & Soyeong Park & Myungsun Kim & Euiseok Hwang, 2020. "Clustering-Based Self-Imputation of Unlabeled Fault Data in a Fleet of Photovoltaic Generation Systems," Energies, MDPI, vol. 13(3), pages 1-16, February.
    14. Arcos Jiménez, Alfredo & Gómez Muñoz, Carlos Quiterio & García Márquez, Fausto Pedro, 2019. "Dirt and mud detection and diagnosis on a wind turbine blade employing guided waves and supervised learning classifiers," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 2-12.
    15. Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
    16. Salcedo-Sanz, S. & Cornejo-Bueno, L. & Prieto, L. & Paredes, D. & García-Herrera, R., 2018. "Feature selection in machine learning prediction systems for renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 728-741.
    17. Raneen Younis & Andreas Reinhardt, 2020. "A Study on Fundamental Waveform Shapes in Microscopic Electrical Load Signatures," Energies, MDPI, vol. 13(12), pages 1-19, June.
    18. Jeng-Wei Lin & Shih-wei Liao & Fang-Yie Leu, 2019. "Sensor Data Compression Using Bounded Error Piecewise Linear Approximation with Resolution Reduction," Energies, MDPI, vol. 12(13), pages 1-20, June.
    19. Tasos Stylianou & Konstantinos Ntelas, 2023. "Impact of COVID-19 Pandemic on Mental Health and Socioeconomic Aspects in Greece," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
    20. Rongheng Lin & Shuo Chen & Zheyu He & Budan Wu & Hua Zou & Xin Zhao & Qiushuang Li, 2024. "Electricity Behavior Modeling and Anomaly Detection Services Based on a Deep Variational Autoencoder Network," Energies, MDPI, vol. 17(16), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1396-:d:1356880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.