IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i5p387-d70558.html
   My bibliography  Save this article

Online Diagnosis for the Capacity Fade Fault of a Parallel-Connected Lithium Ion Battery Group

Author

Listed:
  • Hua Zhang

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
    College of Electronic Science, Northeast Petroleum University, Daqing 163318, China)

  • Lei Pei

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Jinlei Sun

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Kai Song

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Rengui Lu

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Yongping Zhao

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Chunbo Zhu

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Tiansi Wang

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

Abstract

In a parallel-connected battery group (PCBG), capacity degradation is usually caused by the inconsistency between a faulty cell and other normal cells, and the inconsistency occurs due to two potential causes: an aging inconsistency fault or a loose contacting fault. In this paper, a novel method is proposed to perform online and real-time capacity fault diagnosis for PCBGs. Firstly, based on the analysis of parameter variation characteristics of a PCBG with different fault causes, it is found that PCBG resistance can be taken as an indicator for both seeking the faulty PCBG and distinguishing the fault causes. On one hand, the faulty PCBG can be identified by comparing the PCBG resistance among PCBGs; on the other hand, two fault causes can be distinguished by comparing the variance of the PCBG resistances. Furthermore, for online applications, a novel recursive-least-squares algorithm with restricted memory and constraint (RLSRMC), in which the constraint is added to eliminate the “imaginary number” phenomena of parameters, is developed and used in PCBG resistance identification. Lastly, fault simulation and validation results demonstrate that the proposed methods have good accuracy and reliability.

Suggested Citation

  • Hua Zhang & Lei Pei & Jinlei Sun & Kai Song & Rengui Lu & Yongping Zhao & Chunbo Zhu & Tiansi Wang, 2016. "Online Diagnosis for the Capacity Fade Fault of a Parallel-Connected Lithium Ion Battery Group," Energies, MDPI, vol. 9(5), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:5:p:387-:d:70558
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/5/387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/5/387/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Limei & Cheng, Yong & Zhao, Xiuliang, 2015. "A LiFePO4 battery pack capacity estimation approach considering in-parallel cell safety in electric vehicles," Applied Energy, Elsevier, vol. 142(C), pages 293-302.
    2. Wang, Limei & Cheng, Yong & Zhao, Xiuliang, 2015. "Influence of connecting plate resistance upon LiFePO4 battery performance," Applied Energy, Elsevier, vol. 147(C), pages 353-360.
    3. Jinlei Sun & Guo Wei & Lei Pei & Rengui Lu & Kai Song & Chao Wu & Chunbo Zhu, 2015. "Online Internal Temperature Estimation for Lithium-Ion Batteries Based on Kalman Filter," Energies, MDPI, vol. 8(5), pages 1-16, May.
    4. Sun, Yu-Hua & Jou, Hurng-Liahng & Wu, Jinn-Chang & Wu, Kuen-Der, 2010. "Auxiliary health diagnosis method for lead-acid battery," Applied Energy, Elsevier, vol. 87(12), pages 3691-3698, December.
    5. Xiaoyu Li & Kai Song & Guo Wei & Rengui Lu & Chunbo Zhu, 2015. "A Novel Grouping Method for Lithium Iron Phosphate Batteries Based on a Fractional Joint Kalman Filter and a New Modified K-Means Clustering Algorithm," Energies, MDPI, vol. 8(8), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changwen Zheng & Yunlong Ge & Ziqiang Chen & Deyang Huang & Jian Liu & Shiyao Zhou, 2017. "Diagnosis Method for Li-Ion Battery Fault Based on an Adaptive Unscented Kalman Filter," Energies, MDPI, vol. 10(11), pages 1-14, November.
    2. Jichao Hong & Zhenpo Wang & Peng Liu, 2017. "Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles," Energies, MDPI, vol. 10(7), pages 1-16, July.
    3. Zhao, Yang & Liu, Peng & Wang, Zhenpo & Zhang, Lei & Hong, Jichao, 2017. "Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods," Applied Energy, Elsevier, vol. 207(C), pages 354-362.
    4. Ivana Semanjski & Sidharta Gautama, 2016. "Forecasting the State of Health of Electric Vehicle Batteries to Evaluate the Viability of Car Sharing Practices," Energies, MDPI, vol. 9(12), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    2. Wang, Shunli & Shang, Liping & Li, Zhanfeng & Deng, Hu & Li, Jianchao, 2016. "Online dynamic equalization adjustment of high-power lithium-ion battery packs based on the state of balance estimation," Applied Energy, Elsevier, vol. 166(C), pages 44-58.
    3. Wang, Limei & Pan, Chaofeng & Liu, Liang & Cheng, Yong & Zhao, Xiuliang, 2016. "On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis," Applied Energy, Elsevier, vol. 168(C), pages 465-472.
    4. Liu, Xinhua & Ai, Weilong & Naylor Marlow, Max & Patel, Yatish & Wu, Billy, 2019. "The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs," Applied Energy, Elsevier, vol. 248(C), pages 489-499.
    5. Liangwen Yan & Fengfeng Qian & Wei Li, 2018. "Research on Key Parameters Operation Range of Central Air Conditioning Based on Binary K-Means and Apriori Algorithm," Energies, MDPI, vol. 12(1), pages 1-13, December.
    6. Kim, Kyunghyun & Choi, Jung-Il, 2023. "Effect of cell-to-cell variation and module configuration on the performance of lithium-ion battery systems," Applied Energy, Elsevier, vol. 352(C).
    7. Hu, Chao & Jain, Gaurav & Tamirisa, Prabhakar & Gorka, Tom, 2014. "Method for estimating capacity and predicting remaining useful life of lithium-ion battery," Applied Energy, Elsevier, vol. 126(C), pages 182-189.
    8. Akash Samanta & Sheldon S. Williamson, 2021. "A Comprehensive Review of Lithium-Ion Cell Temperature Estimation Techniques Applicable to Health-Conscious Fast Charging and Smart Battery Management Systems," Energies, MDPI, vol. 14(18), pages 1-25, September.
    9. Xiaogang Wu & Siyu Lv & Jizhong Chen, 2017. "Determination of the Optimum Heat Transfer Coefficient and Temperature Rise Analysis for a Lithium-Ion Battery under the Conditions of Harbin City Bus Driving Cycles," Energies, MDPI, vol. 10(11), pages 1-17, October.
    10. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    11. Tian, Jiaqiang & Fan, Yuan & Pan, Tianhong & Zhang, Xu & Yin, Jianning & Zhang, Qingping, 2024. "A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    13. Hosseinzadeh, Elham & Arias, Sebastian & Krishna, Muthu & Worwood, Daniel & Barai, Anup & Widanalage, Dhammika & Marco, James, 2021. "Quantifying cell-to-cell variations of a parallel battery module for different pack configurations," Applied Energy, Elsevier, vol. 282(PA).
    14. Saw, Lip Huat & Ye, Yonghuang & Yew, Ming Chian & Chong, Wen Tong & Yew, Ming Kun & Ng, Tan Ching, 2017. "Computational fluid dynamics simulation on open cell aluminium foams for Li-ion battery cooling system," Applied Energy, Elsevier, vol. 204(C), pages 1489-1499.
    15. Yang, Jufeng & Xia, Bing & Huang, Wenxin & Fu, Yuhong & Mi, Chris, 2018. "Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis," Applied Energy, Elsevier, vol. 212(C), pages 1589-1600.
    16. Li, Changlong & Cui, Naxin & Chang, Long & Cui, Zhongrui & Yuan, Haitao & Zhang, Chenghui, 2022. "Effect of parallel connection topology on air-cooled lithium-ion battery module: Inconsistency analysis and comprehensive evaluation," Applied Energy, Elsevier, vol. 313(C).
    17. Avvari, G.V. & Pattipati, B. & Balasingam, B. & Pattipati, K.R. & Bar-Shalom, Y., 2015. "Experimental set-up and procedures to test and validate battery fuel gauge algorithms," Applied Energy, Elsevier, vol. 160(C), pages 404-418.
    18. Xiaogang Wu & Zhe Chen & Zhiyang Wang, 2017. "Analysis of Low Temperature Preheating Effect Based on Battery Temperature-Rise Model," Energies, MDPI, vol. 10(8), pages 1-15, August.
    19. Chuanxue Song & Yulong Shao & Shixin Song & Cheng Chang & Fang Zhou & Silun Peng & Feng Xiao, 2017. "Energy Management of Parallel-Connected Cells in Electric Vehicles Based on Fuzzy Logic Control," Energies, MDPI, vol. 10(3), pages 1-13, March.
    20. Chuanxue Song & Yulong Shao & Shixin Song & Silun Peng & Fang Zhou & Cheng Chang & Da Wang, 2017. "Insulation Resistance Monitoring Algorithm for Battery Pack in Electric Vehicle Based on Extended Kalman Filtering," Energies, MDPI, vol. 10(5), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:5:p:387-:d:70558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.