IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1121-d106632.html
   My bibliography  Save this article

Analysis of Low Temperature Preheating Effect Based on Battery Temperature-Rise Model

Author

Listed:
  • Xiaogang Wu

    (College of Electrical and Electronics Engineering, Harbin University of Science and Technology, Harbin 150000, China
    State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China)

  • Zhe Chen

    (College of Electrical and Electronics Engineering, Harbin University of Science and Technology, Harbin 150000, China)

  • Zhiyang Wang

    (College of Electrical and Electronics Engineering, Harbin University of Science and Technology, Harbin 150000, China)

Abstract

It is difficult to predict the heating time and power consumption associated with the self-heating process of lithium-ion batteries at low temperatures. A temperature-rise model considering the dynamic changes in battery temperature and state of charge is thus proposed. When this model is combined with the ampere-hour integral method, the quantitative relationship among the discharge rate, heating time, and power consumption, during the constant-current discharge process in an internally self-heating battery, is realized. Results show that the temperature-rise model can accurately reflect actual changes in battery temperature. The results indicate that the discharge rate and the heating time present an exponential decreasing trend that is similar to the discharge rate and the power consumption. When a 2 C discharge rate is selected, the battery temperature can rise from −10 °C to 5 °C in 280 s. In this scenario, power consumption of the heating process does not exceed 15% of the rated capacity. As the discharge rate gradually reduced, the heating time and power consumption of the heating process increase slowly. When the discharge rate is 1 C, the heating time is more than 1080 s and the power consumption approaches 30% of the rated capacity. The effect of discharge rate on the heating time and power consumption during the heating process is significantly enhanced when it is less than 1 C.

Suggested Citation

  • Xiaogang Wu & Zhe Chen & Zhiyang Wang, 2017. "Analysis of Low Temperature Preheating Effect Based on Battery Temperature-Rise Model," Energies, MDPI, vol. 10(8), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1121-:d:106632
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1121/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1121/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinlei Sun & Guo Wei & Lei Pei & Rengui Lu & Kai Song & Chao Wu & Chunbo Zhu, 2015. "Online Internal Temperature Estimation for Lithium-Ion Batteries Based on Kalman Filter," Energies, MDPI, vol. 8(5), pages 1-16, May.
    2. Ruan, Haijun & Jiang, Jiuchun & Sun, Bingxiang & Zhang, Weige & Gao, Wenzhong & Wang, Le Yi & Ma, Zeyu, 2016. "A rapid low-temperature internal heating strategy with optimal frequency based on constant polarization voltage for lithium-ion batteries," Applied Energy, Elsevier, vol. 177(C), pages 771-782.
    3. Xiong, Rui & Sun, Fengchun & Chen, Zheng & He, Hongwen, 2014. "A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 463-476.
    4. Sun, Fengchun & Xiong, Rui & He, Hongwen, 2016. "A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique," Applied Energy, Elsevier, vol. 162(C), pages 1399-1409.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian, Jiting & Zhang, Zeping & Wang, Shixue & Gong, Jinke, 2023. "Analysis of control strategies in alternating current preheating of lithium-ion cell," Applied Energy, Elsevier, vol. 333(C).
    2. Rui Xiong & Hailong Li & Xuan Zhou, 2017. "Advanced Energy Storage Technologies and Their Applications (AESA2017)," Energies, MDPI, vol. 10(9), pages 1-3, September.
    3. Bingxiang Sun & Xianjie Qi & Donglin Song & Haijun Ruan, 2023. "Review of Low-Temperature Performance, Modeling and Heating for Lithium-Ion Batteries," Energies, MDPI, vol. 16(20), pages 1-37, October.
    4. Shanshan Guo & Zhiqiang Han & Jun Wei & Shenggang Guo & Liang Ma, 2022. "A Novel DC-AC Fast Charging Technology for Lithium-Ion Power Battery at Low-Temperatures," Sustainability, MDPI, vol. 14(11), pages 1-10, May.
    5. Wang, Yujie & Zhang, Xingchen & Chen, Zonghai, 2022. "Low temperature preheating techniques for Lithium-ion batteries: Recent advances and future challenges," Applied Energy, Elsevier, vol. 313(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jun-qiu & Fang, Linlin & Shi, Wentong & Jin, Xin, 2018. "Layered thermal model with sinusoidal alternate current for cylindrical lithium-ion battery at low temperature," Energy, Elsevier, vol. 148(C), pages 247-257.
    2. Jiangong Zhu & Zechang Sun & Xuezhe Wei & Haifeng Dai, 2017. "Battery Internal Temperature Estimation for LiFePO 4 Battery Based on Impedance Phase Shift under Operating Conditions," Energies, MDPI, vol. 10(1), pages 1-17, January.
    3. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    4. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    5. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    6. Zheng Chen & Xiaoyu Li & Jiangwei Shen & Wensheng Yan & Renxin Xiao, 2016. "A Novel State of Charge Estimation Algorithm for Lithium-Ion Battery Packs of Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-15, September.
    7. Tang, Xiaopeng & Liu, Boyang & Lv, Zhou & Gao, Furong, 2017. "Observer based battery SOC estimation: Using multi-gain-switching approach," Applied Energy, Elsevier, vol. 204(C), pages 1275-1283.
    8. Lin, Cheng & Gong, Xinle & Xiong, Rui & Cheng, Xingqun, 2017. "A novel H∞ and EKF joint estimation method for determining the center of gravity position of electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 609-616.
    9. Yang, Ruixin & Xiong, Rui & He, Hongwen & Mu, Hao & Wang, Chun, 2017. "A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles," Applied Energy, Elsevier, vol. 207(C), pages 336-345.
    10. Li, Junqiu & Wang, Yihe & Chen, Jianwen & Zhang, Xiaopeng, 2017. "Study on energy management strategy and dynamic modeling for auxiliary power units in range-extended electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 363-375.
    11. Xiaogang Wu & Tianze Wang, 2017. "Optimization of Battery Capacity Decay for Semi-Active Hybrid Energy Storage System Equipped on Electric City Bus," Energies, MDPI, vol. 10(6), pages 1-20, June.
    12. Ye, Min & Guo, Hui & Xiong, Rui & Yu, Quanqing, 2018. "A double-scale and adaptive particle filter-based online parameter and state of charge estimation method for lithium-ion batteries," Energy, Elsevier, vol. 144(C), pages 789-799.
    13. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    14. Dafen Chen & Jiuchun Jiang & Xue Li & Zhanguo Wang & Weige Zhang, 2016. "Modeling of a Pouch Lithium Ion Battery Using a Distributed Parameter Equivalent Circuit for Internal Non-Uniformity Analysis," Energies, MDPI, vol. 9(11), pages 1-18, October.
    15. Xiaofeng Ding & Jiawei Cheng & Feida Chen, 2017. "Impact of Silicon Carbide Devices on the Powertrain Systems in Electric Vehicles," Energies, MDPI, vol. 10(4), pages 1-17, April.
    16. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Zhu, Rui & Duan, Bin & Zhang, Chenghui & Gong, Sizhao, 2019. "Accurate lithium-ion battery modeling with inverse repeat binary sequence for electric vehicle applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Mu, Hao & Xiong, Rui & Zheng, Hongfei & Chang, Yuhua & Chen, Zeyu, 2017. "A novel fractional order model based state-of-charge estimation method for lithium-ion battery," Applied Energy, Elsevier, vol. 207(C), pages 384-393.
    19. Lin, Cheng & Mu, Hao & Xiong, Rui & Cao, Jiayi, 2017. "Multi-model probabilities based state fusion estimation method of lithium-ion battery for electric vehicles: State-of-energy," Applied Energy, Elsevier, vol. 194(C), pages 560-568.
    20. Zhang, Caiping & Jiang, Jiuchun & Gao, Yang & Zhang, Weige & Liu, Qiujiang & Hu, Xiaosong, 2017. "Charging optimization in lithium-ion batteries based on temperature rise and charge time," Applied Energy, Elsevier, vol. 194(C), pages 569-577.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1121-:d:106632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.