Wind turbine wakes on escarpments: A wind-tunnel study
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2021.09.102
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kiran Bhaganagar & Mithu Debnath, 2014. "Implications of Stably Stratified Atmospheric Boundary Layer Turbulence on the Near-Wake Structure of Wind Turbines," Energies, MDPI, vol. 7(9), pages 1-24, September.
- Amin Niayifar & Fernando Porté-Agel, 2016. "Analytical Modeling of Wind Farms: A New Approach for Power Prediction," Energies, MDPI, vol. 9(9), pages 1-13, September.
- Mahdi Abkar & Jens Nørkær Sørensen & Fernando Porté-Agel, 2018. "An Analytical Model for the Effect of Vertical Wind Veer on Wind Turbine Wakes," Energies, MDPI, vol. 11(7), pages 1-10, July.
- Fernando Porté-Agel & Yu-Ting Wu & Chang-Hung Chen, 2013. "A Numerical Study of the Effects of Wind Direction on Turbine Wakes and Power Losses in a Large Wind Farm," Energies, MDPI, vol. 6(10), pages 1-17, October.
- Yu-Ting Wu & Fernando Porté-Agel, 2012. "Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study," Energies, MDPI, vol. 5(12), pages 1-23, December.
- Han, Xingxing & Liu, Deyou & Xu, Chang & Shen, Wen Zhong, 2018. "Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain," Renewable Energy, Elsevier, vol. 126(C), pages 640-651.
- David Bastine & Björn Witha & Matthias Wächter & Joachim Peinke, 2015. "Towards a Simplified DynamicWake Model Using POD Analysis," Energies, MDPI, vol. 8(2), pages 1-26, January.
- Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
- Abkar, Mahdi & Porté-Agel, Fernando, 2014. "Mean and turbulent kinetic energy budgets inside and above very large wind farms under conventionally-neutral condition," Renewable Energy, Elsevier, vol. 70(C), pages 142-152.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fan, Shuanglong & Liu, Zhenqing, 2023. "Proposal of fully-coupled actuated disk model for wind turbine operation modeling in turbulent flow field due to complex topography," Energy, Elsevier, vol. 284(C).
- Liu, Haixiao & Fu, Jianing & Liang, Zetao & Liang, Zhichang & Zhang, Yuming & Xiao, Zhong, 2022. "A simple method of fast evaluating full-field wake velocities for arbitrary wind turbine arrays on complex terrains," Renewable Energy, Elsevier, vol. 201(P1), pages 961-976.
- Arslan Salim Dar & Fernando Porté-Agel, 2022. "An Analytical Model for Wind Turbine Wakes under Pressure Gradient," Energies, MDPI, vol. 15(15), pages 1-13, July.
- Dar, Arslan Salim & Armengol Barcos, Guillem & Porté-Agel, Fernando, 2022. "An experimental investigation of a roof-mounted horizontal-axis wind turbine in an idealized urban environment," Renewable Energy, Elsevier, vol. 193(C), pages 1049-1061.
- Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).
- Zhang, Ziyu & Huang, Peng & Bitsuamlak, Girma & Cao, Shuyang, 2024. "Large-eddy simulation of upwind-hill effects on wind-turbine wakes and power performance," Energy, Elsevier, vol. 294(C).
- Dara Vahidi & Fernando Porté-Agel, 2022. "A New Streamwise Scaling for Wind Turbine Wake Modeling in the Atmospheric Boundary Layer," Energies, MDPI, vol. 15(24), pages 1-18, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Souaiby, Marwa & Porté-Agel, Fernando, 2024. "An improved analytical framework for flow prediction inside and downstream of wind farms," Renewable Energy, Elsevier, vol. 225(C).
- Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
- Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2021. "Wind Farm Area Shape Optimization Using Newly Developed Multi-Objective Evolutionary Algorithms," Energies, MDPI, vol. 14(14), pages 1-25, July.
- Amin Niayifar & Fernando Porté-Agel, 2016. "Analytical Modeling of Wind Farms: A New Approach for Power Prediction," Energies, MDPI, vol. 9(9), pages 1-13, September.
- Kirchner-Bossi, Nicolas & Porté-Agel, Fernando, 2024. "Wind farm power density optimization according to the area size using a novel self-adaptive genetic algorithm," Renewable Energy, Elsevier, vol. 220(C).
- Yang, Kun & Deng, Xiaowei & Ti, Zilong & Yang, Shanghui & Huang, Senbin & Wang, Yuhang, 2023. "A data-driven layout optimization framework of large-scale wind farms based on machine learning," Renewable Energy, Elsevier, vol. 218(C).
- Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
- Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
- Mingqiu Liu & Zhichang Liang & Haixiao Liu, 2022. "Numerical Investigations of Wake Expansion in the Offshore Wind Farm Using a Large Eddy Simulation," Energies, MDPI, vol. 15(6), pages 1-19, March.
- Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
- Jacob R. West & Sanjiva K. Lele, 2020. "Wind Turbine Performance in Very Large Wind Farms: Betz Analysis Revisited," Energies, MDPI, vol. 13(5), pages 1-25, March.
- Zhang, Huan & Ge, Mingwei & Liu, Yongqian & Yang, Xiang I.A., 2021. "A new coupled model for the equivalent roughness heights of wind farms," Renewable Energy, Elsevier, vol. 171(C), pages 34-46.
- Hegazy, Amr & Blondel, Frédéric & Cathelain, Marie & Aubrun, Sandrine, 2022. "LiDAR and SCADA data processing for interacting wind turbine wakes with comparison to analytical wake models," Renewable Energy, Elsevier, vol. 181(C), pages 457-471.
- Pawar, Suraj & Sharma, Ashesh & Vijayakumar, Ganesh & Bay, Chrstopher J. & Yellapantula, Shashank & San, Omer, 2022. "Towards multi-fidelity deep learning of wind turbine wakes," Renewable Energy, Elsevier, vol. 200(C), pages 867-879.
- Song, Jeonghwan & Kim, Taewan & You, Donghyun, 2023. "Particle swarm optimization of a wind farm layout with active control of turbine yaws," Renewable Energy, Elsevier, vol. 206(C), pages 738-747.
- Zhang, Ziyu & Huang, Peng, 2023. "Prediction of multiple-wake velocity and wind power using a cosine-shaped wake model," Renewable Energy, Elsevier, vol. 219(P1).
- Michael F. Howland & John O. Dabiri, 2020. "Influence of Wake Model Superposition and Secondary Steering on Model-Based Wake Steering Control with SCADA Data Assimilation," Energies, MDPI, vol. 14(1), pages 1-20, December.
- Tristan Revaz & Fernando Porté-Agel, 2021. "Large-Eddy Simulation of Wind Turbine Flows: A New Evaluation of Actuator Disk Models," Energies, MDPI, vol. 14(13), pages 1-22, June.
- Pankaj K. Jha & Earl P. N. Duque & Jessica L. Bashioum & Sven Schmitz, 2015. "Unraveling the Mysteries of Turbulence Transport in a Wind Farm," Energies, MDPI, vol. 8(7), pages 1-29, June.
More about this item
Keywords
Wakes; Topography; Wind energy; Particle-image velocimetry;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:181:y:2022:i:c:p:1258-1275. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.