A Thermal Runaway Simulation on a Lithium Titanate Battery and the Battery Module
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wang, Tao & Tseng, K.J. & Zhao, Jiyun & Wei, Zhongbao, 2014. "Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies," Applied Energy, Elsevier, vol. 134(C), pages 229-238.
- Amer Hammami & Nathalie Raymond & Michel Armand, 2003. "Runaway risk of forming toxic compounds," Nature, Nature, vol. 424(6949), pages 635-636, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Da Li & Zhaosheng Zhang & Peng Liu & Zhenpo Wang, 2019. "DBSCAN-Based Thermal Runaway Diagnosis of Battery Systems for Electric Vehicles," Energies, MDPI, vol. 12(15), pages 1-15, August.
- Hyung-Wook Kang & Hyun-Seong Lee & Jae-Ho Rhee & Kun-A Lee, 2023. "DC Voltage Source Based on a Battery of Supercapacitors with a Regulator in the Form of an Isolated Boost LCC Resonant Converter," Energies, MDPI, vol. 16(18), pages 1-15, September.
- Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jiangqiu & He, Xiangming, 2016. "A 3D thermal runaway propagation model for a large format lithium ion battery module," Energy, Elsevier, vol. 115(P1), pages 194-208.
- Yubai Li & Zhifu Zhou & Wei-Tao Wu, 2020. "Three-Dimensional Thermal Modeling of Internal Shorting Process in a 20Ah Lithium-Ion Polymer Battery," Energies, MDPI, vol. 13(4), pages 1-16, February.
- Dariusz Masłowski & Ewa Kulińska & Łukasz Krzewicki, 2023. "Alternative Methods of Replacing Electric Batteries in Public Transport Vehicles," Energies, MDPI, vol. 16(15), pages 1-22, August.
- Andreas Melcher & Carlos Ziebert & Magnus Rohde & Hans Jürgen Seifert, 2016. "Modeling and Simulation of the Thermal Runaway Behavior of Cylindrical Li-Ion Cells—Computing of Critical Parameters," Energies, MDPI, vol. 9(4), pages 1-19, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Binghe & Yin, Sha & Xu, Jun, 2016. "Integrated computation model of lithium-ion battery subject to nail penetration," Applied Energy, Elsevier, vol. 183(C), pages 278-289.
- Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
- Liu, Jiahao & Fan, Yining & Wang, Jinhui & Tao, Changfa & Chen, Mingyi, 2022. "A model-scale experimental and theoretical study on a mineral oil-immersed battery cooling system," Renewable Energy, Elsevier, vol. 201(P1), pages 712-723.
- Lalan K. Singh & Anoop K. Gupta, 2023. "Hybrid cooling-based lithium-ion battery thermal management for electric vehicles," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3627-3648, April.
- Kim, Kyunghyun & Choi, Jung-Il, 2023. "Effect of cell-to-cell variation and module configuration on the performance of lithium-ion battery systems," Applied Energy, Elsevier, vol. 352(C).
- Chen, Kai & Song, Mengxuan & Wei, Wei & Wang, Shuangfeng, 2018. "Structure optimization of parallel air-cooled battery thermal management system with U-type flow for cooling efficiency improvement," Energy, Elsevier, vol. 145(C), pages 603-613.
- Chuanwei Zhang & Zhan Xia & Huaibin Gao & Jianping Wen & Shangrui Chen & Meng Dang & Sujing Gu & Jianing Zhang, 2020. "A Coolant Circulation Cooling System Combining Aluminum Plates and Copper Rods for Li-Ion Battery Pack," Energies, MDPI, vol. 13(17), pages 1-14, August.
- Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
- Jilte, Ravindra & Afzal, Asif & Panchal, Satyam, 2021. "A novel battery thermal management system using nano-enhanced phase change materials," Energy, Elsevier, vol. 219(C).
- Chengning Zhang & Xin Jin & Junqiu Li, 2017. "PTC Self-Heating Experiments and Thermal Modeling of Lithium-Ion Battery Pack in Electric Vehicles," Energies, MDPI, vol. 10(4), pages 1-21, April.
- Yuxiang Yang & Mingyu Gao & Zhiwei He & Caisheng Wang, 2017. "A Robust Battery Grouping Method Based on a Characteristic Distribution Model," Energies, MDPI, vol. 10(7), pages 1-14, July.
- Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
- Xiongbin Peng & Xujian Cui & Xiangping Liao & Akhil Garg, 2020. "A Thermal Investigation and Optimization of an Air-Cooled Lithium-Ion Battery Pack," Energies, MDPI, vol. 13(11), pages 1-20, June.
- Shan, Shuai & Li, Li & Xu, Qiang & Ling, Lei & Xie, Yajun & Wang, Hongkang & Zheng, Keqing & Zhang, Lanchun & Bei, Shaoyi, 2023. "Numerical investigation of a compact and lightweight thermal management system with axially mounted cooling tubes for cylindrical lithium-ion battery module," Energy, Elsevier, vol. 274(C).
- Bahman Shabani & Manu Biju, 2015. "Theoretical Modelling Methods for Thermal Management of Batteries," Energies, MDPI, vol. 8(9), pages 1-25, September.
- Seham Shahid & Martin Agelin-Chaab, 2017. "Analysis of Cooling Effectiveness and Temperature Uniformity in a Battery Pack for Cylindrical Batteries," Energies, MDPI, vol. 10(8), pages 1-17, August.
- Kai Chen & Ligong Yang & Yiming Chen & Bingheng Wu & Mengxuan Song, 2024. "Efficient Design of Battery Thermal Management Systems for Improving Cooling Performance and Reducing Pressure Drop," Energies, MDPI, vol. 17(10), pages 1-14, May.
- Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
- Zhang, Yuan Ci & Briat, Olivier & Boulon, Loïc & Deletage, Jean-Yves & Martin, Cyril & Coccetti, Fabio & Vinassa, Jean-Michel, 2019. "Non-isothermal Ragone plots of Li-ion cells from datasheet and galvanostatic discharge tests," Applied Energy, Elsevier, vol. 247(C), pages 703-715.
- Zhiwei He & Mingyu Gao & Guojin Ma & Yuanyuan Liu & Lijun Tang, 2016. "Battery Grouping with Time Series Clustering Based on Affinity Propagation," Energies, MDPI, vol. 9(7), pages 1-11, July.
More about this item
Keywords
lithium titanate battery; electro-thermal model; finite element method; thermal runaway;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:1:p:490-500:d:44641. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.