IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v424y2003i6949d10.1038_424635b.html
   My bibliography  Save this article

Runaway risk of forming toxic compounds

Author

Listed:
  • Amer Hammami

    (Laboratoire International sur Les Matériaux Electro-actifs CNRS-UdM, UMR 2289, Université de Montréal)

  • Nathalie Raymond

    (Laboratoire International sur Les Matériaux Electro-actifs CNRS-UdM, UMR 2289, Université de Montréal)

  • Michel Armand

    (Laboratoire International sur Les Matériaux Electro-actifs CNRS-UdM, UMR 2289, Université de Montréal)

Abstract

Lithium-ion batteries are stabilized by an ultrathin protective film that is 10–50 nanometres thick and coats both electrodes. Here we artifically simulate the 'thermal-runaway' conditions that would arise should this coating be destroyed, which could happen in a battery large enough to overheat beyond 80 °C. We find that under these conditions the reaction of the battery electrolyte with the material of the unprotected positive electrode results in the formation of toxic fluoro-organic compounds. Although not a concern for the small units used in today's portable devices, this unexpected chemical hazard should be taken into account as larger and larger lithium-ion batteries are developed, for example for incorporation into electric-powered vehicles.

Suggested Citation

  • Amer Hammami & Nathalie Raymond & Michel Armand, 2003. "Runaway risk of forming toxic compounds," Nature, Nature, vol. 424(6949), pages 635-636, August.
  • Handle: RePEc:nat:nature:v:424:y:2003:i:6949:d:10.1038_424635b
    DOI: 10.1038/424635b
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/424635b
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/424635b?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miao Bai & Xiaoyu Tang & Min Zhang & Helin Wang & Zhiqiao Wang & Ahu Shao & Yue Ma, 2024. "An in-situ polymerization strategy for gel polymer electrolyte Si||Ni-rich lithium-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Lingxi Kong & Chuan Li & Jiuchun Jiang & Michael G. Pecht, 2018. "Li-Ion Battery Fire Hazards and Safety Strategies," Energies, MDPI, vol. 11(9), pages 1-11, August.
    3. Man Chen & Qiujuan Sun & Yongqi Li & Ke Wu & Bangjin Liu & Peng Peng & Qingsong Wang, 2015. "A Thermal Runaway Simulation on a Lithium Titanate Battery and the Battery Module," Energies, MDPI, vol. 8(1), pages 1-11, January.
    4. Yetik, Ozge & Karakoc, Tahir Hikmet, 2020. "A numerical study on the thermal performance of prismatic li-ion batteries for hibrid electric aircraft," Energy, Elsevier, vol. 195(C).
    5. Van-Tinh Huynh & Kyoungsik Chang & Sang-Wook Lee, 2021. "One-Dimensional and Three-Dimensional Numerical Investigations of Thermal Performance of Phase Change Materials in a Lithium-Ion Battery," Energies, MDPI, vol. 14(24), pages 1-18, December.
    6. Thomas Imre Cyrille Buidin & Florin Mariasiu, 2021. "Battery Thermal Management Systems: Current Status and Design Approach of Cooling Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    7. Liu, Binghe & Yin, Sha & Xu, Jun, 2016. "Integrated computation model of lithium-ion battery subject to nail penetration," Applied Energy, Elsevier, vol. 183(C), pages 278-289.
    8. Julian Marius Müller & Raphael Kunderer, 2019. "Ex-Ante Prediction of Disruptive Innovation: The Case of Battery Technologies," Sustainability, MDPI, vol. 11(19), pages 1-19, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:424:y:2003:i:6949:d:10.1038_424635b. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.