IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v5y2002i2p374-387.html
   My bibliography  Save this article

Lag length and mean break in stationary VAR models

Author

Listed:
  • Minxian Yang

Abstract

We consider three approaches to determine the lag length of a stationary vector autoregression model and the presence of a mean break. The first approach, commonly used in practice, uses a break test as a specification check after the lag length is selected by an information criterion. The second performs the break test prior to estimating the lag length. The third simultaneously selects both the lag length and the break by some information criterion. While the latter two approaches are consistent for the true lag order, we justify the validity of the first approach by showing that the lag length estimator based on specific information criteria is at worst biased upwards asymptotically when the mean break is ignored. Thus, conditional on the estimated lag length, the break test retains its asymptotic power properties. Finite-sample simulation results show that the second approach tends to have the most stable performance. The results also indicate that the best strategy for short-run forecasting does not necessarily coincide with the best strategy for finding the correct model. Copyright Royal Economic Society, 2002

Suggested Citation

  • Minxian Yang, 2002. "Lag length and mean break in stationary VAR models," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 374-387, June.
  • Handle: RePEc:ect:emjrnl:v:5:y:2002:i:2:p:374-387
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pitarakis Jean-Yves, 2006. "Model Selection Uncertainty and Detection of Threshold Effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(1), pages 1-30, March.
    2. Francisco Martínez-Álvarez & Alicia Troncoso & Gualberto Asencio-Cortés & José C. Riquelme, 2015. "A Survey on Data Mining Techniques Applied to Electricity-Related Time Series Forecasting," Energies, MDPI, vol. 8(11), pages 1-32, November.
    3. Pitarakis, J., 2004. "Model selection uncertainty and detection of threshold effects," Discussion Paper Series In Economics And Econometrics 0409, Economics Division, School of Social Sciences, University of Southampton.
    4. J. Kim & A. Kartsaklas & M. Karanasos, 2005. "The volume–volatility relationship and the opening of the Korean stock market to foreign investors after the financial turmoil in 1997," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(3), pages 245-271, September.
    5. Pitarakis Jean-Yves, 2006. "Model Selection Uncertainty and Detection of Threshold Effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(1), pages 1-30, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:5:y:2002:i:2:p:374-387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.