IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v57y2006i4d10.1057_palgrave.jors.2601995.html
   My bibliography  Save this article

Electricity price forecasting through transfer function models

Author

Listed:
  • F J Nogales

    (Universidad Carlos III de Madrid)

  • A J Conejo

    (Universidad de Castilla-La Mancha)

Abstract

Forecasting electricity prices in presentday competitive electricity markets is a must for both producers and consumers because both need price estimates to develop their respective market bidding strategies. This paper proposes a transfer function model to predict electricity prices based on both past electricity prices and demands, and discuss the rationale to build it. The importance of electricity demand information is assessed. Appropriate metrics to appraise prediction quality are identified and used. Realistic and extensive simulations based on data from the PJM Interconnection for year 2003 are conducted. The proposed model is compared with naïve and other techniques.

Suggested Citation

  • F J Nogales & A J Conejo, 2006. "Electricity price forecasting through transfer function models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 350-356, April.
  • Handle: RePEc:pal:jorsoc:v:57:y:2006:i:4:d:10.1057_palgrave.jors.2601995
    DOI: 10.1057/palgrave.jors.2601995
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601995
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Conejo, Antonio J. & Contreras, Javier & Espinola, Rosa & Plazas, Miguel A., 2005. "Forecasting electricity prices for a day-ahead pool-based electric energy market," International Journal of Forecasting, Elsevier, vol. 21(3), pages 435-462.
    2. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    3. M. T. Barlow, 2002. "A Diffusion Model For Electricity Prices," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 287-298, October.
    4. Antonio Conejo & Francisco Prieto, 2001. "Mathematical programming and electricity markets," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(1), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corredera, Alberto & Ruiz, Carlos, 2023. "Prescriptive selection of machine learning hyperparameters with applications in power markets: Retailer’s optimal trading," European Journal of Operational Research, Elsevier, vol. 306(1), pages 370-388.
    2. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    3. Corredera, Alberto, 2022. "Prescriptive selection of machine learning hyperparameters with applications in power markets: retailer's optimal trading," DES - Working Papers. Statistics and Econometrics. WS 33693, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601, December.
    5. Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian density forecasting of intraday electricity prices using multivariate skew t distributions," International Journal of Forecasting, Elsevier, vol. 24(4), pages 710-727.
    6. Miguel Pinhão & Miguel Fonseca & Ricardo Covas, 2022. "Electricity Spot Price Forecast by Modelling Supply and Demand Curve," Mathematics, MDPI, vol. 10(12), pages 1-20, June.
    7. Kelly Burns & Imad Moosa, 2017. "Demystifying the Meese–Rogoff puzzle: structural breaks or measures of forecasting accuracy?," Applied Economics, Taylor & Francis Journals, vol. 49(48), pages 4897-4910, October.
    8. Jichun Liu & Yangfang Yang & Yue Xiang & Junyong Liu, 2019. "A Power Exchange Strategy for Multiple Areas with Hydro Power and Flexible Loads," Energies, MDPI, vol. 12(6), pages 1-17, March.
    9. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    10. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    11. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    12. Diongue, Abdou Kâ & Guégan, Dominique & Vignal, Bertrand, 2009. "Forecasting electricity spot market prices with a k-factor GIGARCH process," Applied Energy, Elsevier, vol. 86(4), pages 505-510, April.
    13. Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
    14. Mariana Oliveira & Luís Torgo & Vítor Santos Costa, 2021. "Evaluation Procedures for Forecasting with Spatiotemporal Data," Mathematics, MDPI, vol. 9(6), pages 1-27, March.
    15. Sinha, Pankaj & Mathur, Kritika, 2016. "Empirical Analysis of Developments in the Day Ahead Electricity Markets in India," MPRA Paper 72969, University Library of Munich, Germany.
    16. Fiuza de Bragança, Gabriel Godofredo & Daglish, Toby, 2016. "Can market power in the electricity spot market translate into market power in the hedge market?," Energy Economics, Elsevier, vol. 58(C), pages 11-26.
    17. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    18. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    19. Thao Pham & Killian Lemoine, 2020. "Impacts of subsidized renewable electricity generation on spot market prices in Germany : Evidence from a GARCH model with panel data," Working Papers hal-02568268, HAL.
    20. Rafal Weron & Adam Misiorek, 2006. "Short-term electricity price forecasting with time series models: A review and evaluation," HSC Research Reports HSC/06/01, Hugo Steinhaus Center, Wroclaw University of Technology.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:57:y:2006:i:4:d:10.1057_palgrave.jors.2601995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.