IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v47y2015icp37-41.html
   My bibliography  Save this article

Forecasting short-term electricity consumption using a semantics-based genetic programming framework: The South Italy case

Author

Listed:
  • Castelli, Mauro
  • Vanneschi, Leonardo
  • De Felice, Matteo

Abstract

Accurate and robust short-term load forecasting plays a significant role in electric power operations. This paper proposes a variant of genetic programming, improved by incorporating semantic awareness in algorithm, to address a short term load forecasting problem. The objective is to automatically generate models that could effectively and reliably predict energy consumption. The presented results, obtained considering a particularly interesting case of the South Italy area, show that the proposed approach outperforms state of the art methods. Hence, the proposed approach reveals appropriate for the problem of forecasting electricity consumption. This study, besides providing an important contribution to the energy load forecasting, confirms the suitability of genetic programming improved with semantic methods in addressing complex real-life applications.

Suggested Citation

  • Castelli, Mauro & Vanneschi, Leonardo & De Felice, Matteo, 2015. "Forecasting short-term electricity consumption using a semantics-based genetic programming framework: The South Italy case," Energy Economics, Elsevier, vol. 47(C), pages 37-41.
  • Handle: RePEc:eee:eneeco:v:47:y:2015:i:c:p:37-41
    DOI: 10.1016/j.eneco.2014.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988314002539
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2014.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. de Oliveira, Erick Meira & Cyrino Oliveira, Fernando Luiz, 2018. "Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods," Energy, Elsevier, vol. 144(C), pages 776-788.
    3. Duangnate, Kannika & Mjelde, James W., 2017. "Comparison of data-rich and small-scale data time series models generating probabilistic forecasts: An application to U.S. natural gas gross withdrawals," Energy Economics, Elsevier, vol. 65(C), pages 411-423.
    4. Francisco Martínez-Álvarez & Alicia Troncoso & Gualberto Asencio-Cortés & José C. Riquelme, 2015. "A Survey on Data Mining Techniques Applied to Electricity-Related Time Series Forecasting," Energies, MDPI, vol. 8(11), pages 1-32, November.
    5. Saâdaoui, Foued & Ben Jabeur, Sami, 2023. "Analyzing the influence of geopolitical risks on European power prices using a multiresolution causal neural network," Energy Economics, Elsevier, vol. 124(C).
    6. Meira, Erick & Lila, Maurício Franca & Cyrino Oliveira, Fernando Luiz, 2023. "A novel reconciliation approach for hierarchical electricity consumption forecasting based on resistant regression," Energy, Elsevier, vol. 269(C).
    7. Mauro Castelli & Ivo Gonçalves & Leonardo Trujillo & Aleš Popovič, 0. "An evolutionary system for ozone concentration forecasting," Information Systems Frontiers, Springer, vol. 0, pages 1-10.
    8. Mauro Castelli & Ivo Gonçalves & Leonardo Trujillo & Aleš Popovič, 2017. "An evolutionary system for ozone concentration forecasting," Information Systems Frontiers, Springer, vol. 19(5), pages 1123-1132, October.
    9. Federico Divina & Miguel García Torres & Francisco A. Goméz Vela & José Luis Vázquez Noguera, 2019. "A Comparative Study of Time Series Forecasting Methods for Short Term Electric Energy Consumption Prediction in Smart Buildings," Energies, MDPI, vol. 12(10), pages 1-23, May.
    10. Federico Divina & Aude Gilson & Francisco Goméz-Vela & Miguel García Torres & José F. Torres, 2018. "Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting," Energies, MDPI, vol. 11(4), pages 1-31, April.
    11. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.

    More about this item

    Keywords

    Forecasting; Electricity demand; Genetic programming; Semantics;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:47:y:2015:i:c:p:37-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.