Neural Network Ensemble Based Approach for 2D-Interval Prediction of Solar Photovoltaic Power
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zeng, Jianwu & Qiao, Wei, 2013. "Short-term solar power prediction using a support vector machine," Renewable Energy, Elsevier, vol. 52(C), pages 118-127.
- Dong, Zibo & Yang, Dazhi & Reindl, Thomas & Walsh, Wilfred M., 2015. "A novel hybrid approach based on self-organizing maps, support vector regression and particle swarm optimization to forecast solar irradiance," Energy, Elsevier, vol. 82(C), pages 570-577.
- Zhang, Peng & Li, Wenyuan & Li, Sherwin & Wang, Yang & Xiao, Weidong, 2013. "Reliability assessment of photovoltaic power systems: Review of current status and future perspectives," Applied Energy, Elsevier, vol. 104(C), pages 822-833.
- Francisco Martínez-Álvarez & Alicia Troncoso & Gualberto Asencio-Cortés & José C. Riquelme, 2015. "A Survey on Data Mining Techniques Applied to Electricity-Related Time Series Forecasting," Energies, MDPI, vol. 8(11), pages 1-32, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
- Francisco Martínez-Álvarez & Alicia Troncoso & José C. Riquelme, 2017. "Recent Advances in Energy Time Series Forecasting," Energies, MDPI, vol. 10(6), pages 1-3, June.
- Michel Fliess & Cédric Join & Cyril Voyant, 2018. "Prediction bands for solar energy: New short-term time series forecasting techniques," Post-Print hal-01736518, HAL.
- Luca Massidda & Marino Marrocu, 2018. "Quantile Regression Post-Processing of Weather Forecast for Short-Term Solar Power Probabilistic Forecasting," Energies, MDPI, vol. 11(7), pages 1-20, July.
- Raul Garcia-Segura & Javier Vázquez Castillo & Fernando Martell-Chavez & Omar Longoria-Gandara & Jaime Ortegón Aguilar, 2017. "Electric Arc Furnace Modeling with Artificial Neural Networks and Arc Length with Variable Voltage Gradient," Energies, MDPI, vol. 10(9), pages 1-11, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cabello-López, Tomás & Carranza-García, Manuel & Riquelme, José C. & García-Gutiérrez, Jorge, 2023. "Forecasting solar energy production in Spain: A comparison of univariate and multivariate models at the national level," Applied Energy, Elsevier, vol. 350(C).
- Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Peters, Lennart & Madlener, Reinhard, 2017.
"Economic evaluation of maintenance strategies for ground-mounted solar photovoltaic plants,"
Applied Energy, Elsevier, vol. 199(C), pages 264-280.
- Peters, Lennart & Madlener, Reinhard, 2016. "Economic Evaluation of Maintenance Strategies for Ground-Mounted Solar Photovoltaic Plants," FCN Working Papers 8/2016, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Terracciano, Anthony Carmine & Vasu, Subith S. & Orlovskaya, Nina, 2016. "Design and development of a porous heterogeneous combustor for efficient heat production by combustion of liquid and gaseous fuels," Applied Energy, Elsevier, vol. 179(C), pages 228-236.
- Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
- Marian Liberos & Raúl González-Medina & Gabriel Garcerá & Emilio Figueres, 2019. "A Method to Enhance the Global Efficiency of High-Power Photovoltaic Inverters Connected in Parallel," Energies, MDPI, vol. 12(11), pages 1-19, June.
- Yue, Hui & Worrell, Ernst & Crijns-Graus, Wina, 2021. "Impacts of regional industrial electricity savings on the development of future coal capacity per electricity grid and related air pollution emissions – A case study for China," Applied Energy, Elsevier, vol. 282(PB).
- M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
- Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
- Zhou, P. & Jin, R.Y. & Fan, L.W., 2016. "Reliability and economic evaluation of power system with renewables: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 537-547.
- Edna S. Solano & Payman Dehghanian & Carolina M. Affonso, 2022. "Solar Radiation Forecasting Using Machine Learning and Ensemble Feature Selection," Energies, MDPI, vol. 15(19), pages 1-18, September.
- Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
- Marcin Fałdziński & Piotr Fiszeder & Witold Orzeszko, 2020. "Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression," Energies, MDPI, vol. 14(1), pages 1-18, December.
- Aurelia Rybak & Aleksandra Rybak & Spas D. Kolev, 2023. "Modeling the Photovoltaic Power Generation in Poland in the Light of PEP2040: An Application of Multiple Regression," Energies, MDPI, vol. 16(22), pages 1-17, November.
- Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
- Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
- Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Sueyoshi, Toshiyuki & Goto, Mika, 2017. "Measurement of returns to scale on large photovoltaic power stations in the United States and Germany," Energy Economics, Elsevier, vol. 64(C), pages 306-320.
- GarcÃa Nieto, P.J. & GarcÃa-Gonzalo, E. & Sánchez Lasheras, F. & de Cos Juez, F.J., 2015. "Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 219-231.
- Jannesar, Mohammad Rasol & Sedighi, Alireza & Savaghebi, Mehdi & Guerrero, Josep M., 2018. "Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration," Applied Energy, Elsevier, vol. 226(C), pages 957-966.
More about this item
Keywords
solar power prediction; interval forecasts; 2D-interval forecasts; ensembles of neural networks; mutual information; support vector regression;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:829-:d:80650. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.