IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i7p3167-3181d26830.html
   My bibliography  Save this article

Hydrogen-Rich Gas Production by Sorption Enhanced Steam Reforming of Woodgas Containing TAR over a Commercial Ni Catalyst and Calcined Dolomite as CO 2 Sorbent

Author

Listed:
  • Mario Sisinni

    (CIRPS—Interuniversity Research Centre on Sustainable Development, Piazza San Pietro in Vincoli 10, Rome 00184, Italy)

  • Andrea Di Carlo

    (Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy)

  • Enrico Bocci

    (Energy and Mechanic Department, Marconi University of Rome, Via Virgilio. 8, Rome 00193, Italy)

  • Andrea Micangeli

    (Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy)

  • Vincenzo Naso

    (CIRPS—Interuniversity Research Centre on Sustainable Development, Piazza San Pietro in Vincoli 10, Rome 00184, Italy
    Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy)

Abstract

The aim of this work was the evaluation of the catalytic steam reforming of a gaseous fuel obtained by steam biomass gasification to convert topping atmosphere residue (TAR) and CH 4 and to produce pure H 2 by means of a CO 2 sorbent. This experimental work deals with the demonstration of the practical feasibility of such concepts, using a real woodgas obtained from fluidized bed steam gasification of hazelnut shells. This study evaluates the use of a commercial Ni catalyst and calcined dolomite (CaO/MgO). The bed material simultaneously acts as reforming catalyst and CO 2 sorbent. The experimental investigations have been carried out in a fixed bed micro-reactor rig using a slipstream from the gasifier to evaluate gas cleaning and upgrading options. The reforming/sorption tests were carried out at 650 °C while regeneration of the sorbent was carried out at 850 °C in a nitrogen environment. Both combinations of catalyst and sorbent are very effective in TAR and CH 4 removal, with conversions near 100%, while the simultaneous CO 2 sorption effectively enhances the water gas shift reaction producing a gas with a hydrogen volume fraction of over 90%. Multicycle tests of reforming/CO 2 capture and regeneration were performed to verify the stability of the catalysts and sorbents to remove TAR and capture CO 2 during the duty cycle.

Suggested Citation

  • Mario Sisinni & Andrea Di Carlo & Enrico Bocci & Andrea Micangeli & Vincenzo Naso, 2013. "Hydrogen-Rich Gas Production by Sorption Enhanced Steam Reforming of Woodgas Containing TAR over a Commercial Ni Catalyst and Calcined Dolomite as CO 2 Sorbent," Energies, MDPI, vol. 6(7), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:7:p:3167-3181:d:26830
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/7/3167/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/7/3167/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Devi, Lopamudra & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G. & van Paasen, Sander V.B. & Bergman, Patrick C.A. & Kiel, Jacob H.A., 2005. "Catalytic decomposition of biomass tars: use of dolomite and untreated olivine," Renewable Energy, Elsevier, vol. 30(4), pages 565-587.
    2. Anis, Samsudin & Zainal, Z.A., 2011. "Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2355-2377, June.
    3. Orecchini, Fabio & Bocci, Enrico, 2007. "Biomass to hydrogen for the realization of closed cycles of energy resources," Energy, Elsevier, vol. 32(6), pages 1006-1011.
    4. Li, Chunshan & Suzuki, Kenzi, 2009. "Tar property, analysis, reforming mechanism and model for biomass gasification--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 594-604, April.
    5. Bocci, E. & Di Carlo, A. & Marcelo, D., 2009. "Power plant perspectives for sugarcane mills," Energy, Elsevier, vol. 34(5), pages 689-698.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Gallucci & Raffaele Liberatore & Luca Sapegno & Edoardo Volponi & Paolo Venturini & Franco Rispoli & Enrico Paris & Monica Carnevale & Andrea Colantoni, 2019. "Influence of Oxidant Agent on Syngas Composition: Gasification of Hazelnut Shells through an Updraft Reactor," Energies, MDPI, vol. 13(1), pages 1-13, December.
    2. Yu, Ching-tsung & Kuo, Huan-ting & Chen, Yi-ming, 2016. "Carbon dioxide removal using calcium aluminate carbonates on titanic oxide under warm-gas conditions," Applied Energy, Elsevier, vol. 162(C), pages 1122-1130.
    3. Zhang, Zhikun & Liu, Lina & Shen, Boxiong & Wu, Chunfei, 2018. "Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1086-1109.
    4. Vera Marcantonio & Marcello De Falco & Enrico Bocci, 2022. "Non-Thermal Plasma Technology for CO 2 Conversion—An Overview of the Most Relevant Experimental Results and Kinetic Models," Energies, MDPI, vol. 15(20), pages 1-18, October.
    5. Li, Bin & Magoua Mbeugang, Christian Fabrice & Huang, Yong & Liu, Dongjing & Wang, Qian & Zhang, Shu, 2022. "A review of CaO based catalysts for tar removal during biomass gasification," Energy, Elsevier, vol. 244(PB).
    6. Xiaotong Ma & Yingjie Li & Yi Qian & Zeyan Wang, 2019. "A Carbide Slag-Based, Ca 12 Al 14 O 33 -Stabilized Sorbent Prepared by the Hydrothermal Template Method Enabling Efficient CO 2 Capture," Energies, MDPI, vol. 12(13), pages 1-17, July.
    7. Vincenzo Palma & Concetta Ruocco & Eugenio Meloni & Antonio Ricca, 2017. "Influence of Catalytic Formulation and Operative Conditions on Coke Deposition over CeO 2 -SiO 2 Based Catalysts for Ethanol Reforming," Energies, MDPI, vol. 10(7), pages 1-13, July.
    8. Andrea Micangeli & Vincenzo Naso & Emanuele Michelangeli & Apollonia Matrisciano & Francesca Farioli & Nicola P. Belfiore, 2014. "Attitudes toward Sustainability and Green Economy Issues Related to Some Students Learning Their Characteristics: A Preliminary Study," Sustainability, MDPI, vol. 6(6), pages 1-20, May.
    9. Orlando Corigliano & Leonardo Pagnotta & Petronilla Fragiacomo, 2022. "On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review," Sustainability, MDPI, vol. 14(22), pages 1-73, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Ningbo & Salisu, Jamilu & Quan, Cui & Williams, Paul, 2021. "Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    3. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    4. Ud Din, Zia & Zainal, Z.A., 2017. "The fate of SOFC anodes under biomass producer gas contaminants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1050-1066.
    5. Font Palma, Carolina, 2013. "Modelling of tar formation and evolution for biomass gasification: A review," Applied Energy, Elsevier, vol. 111(C), pages 129-141.
    6. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    7. Donatella Barisano & Giuseppe Canneto & Francesco Nanna & Antonio Villone & Emanuele Fanelli & Cesare Freda & Massimiliano Grieco & Andrea Lotierzo & Giacinto Cornacchia & Giacobbe Braccio & Vera Marc, 2022. "Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Integrated to a Portable Purification System—Part II," Energies, MDPI, vol. 15(13), pages 1-16, June.
    8. Di Wu & Heming Dong & Jiyi Luan & Qian Du & Jianmin Gao & Dongdong Feng & Yu Zhang & Ziqi Zhao & Dun Li, 2023. "Reaction Molecular Dynamics Study on the Mechanism of Alkali Metal Sodium at the Initial Stage of Naphthalene Pyrolysis Evolution," Energies, MDPI, vol. 16(17), pages 1-19, August.
    9. Song, Hee Gaen & Chun, Young Nam, 2020. "Tar decomposition-reforming conversion on microwave-heating carbon receptor," Energy, Elsevier, vol. 199(C).
    10. Nicola Aldi & Nicola Casari & Michele Pinelli & Alessio Suman & Alessandro Vulpio, 2022. "Performance Degradation of a Shell-and-Tube Heat Exchanger Due to Tar Deposition," Energies, MDPI, vol. 15(4), pages 1-16, February.
    11. Ahsanullah Soomro & Shiyi Chen & Shiwei Ma & Wenguo Xiang, 2018. "Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process," Energy & Environment, , vol. 29(6), pages 839-867, September.
    12. Shen, Yafei & Yoshikawa, Kunio, 2013. "Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 371-392.
    13. Prasertcharoensuk, Phuet & Bull, Steve J. & Phan, Anh N., 2019. "Gasification of waste biomass for hydrogen production: Effects of pyrolysis parameters," Renewable Energy, Elsevier, vol. 143(C), pages 112-120.
    14. Cortazar, M. & Lopez, G. & Alvarez, J. & Amutio, M. & Bilbao, J. & Olazar, M., 2018. "Advantages of confining the fountain in a conical spouted bed reactor for biomass steam gasification," Energy, Elsevier, vol. 153(C), pages 455-463.
    15. Li, Jian & Tao, Junyu & Yan, Beibei & Jiao, Liguo & Chen, Guanyi & Hu, Jianli, 2021. "Review of microwave-based treatments of biomass gasification tar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Huang, Zhen & Zheng, Anqing & Deng, Zhengbing & Wei, Guoqiang & Zhao, Kun & Chen, Dezhen & He, Fang & Zhao, Zengli & Li, Haibin & Li, Fanxing, 2020. "In-situ removal of toluene as a biomass tar model compound using NiFe2O4 for application in chemical looping gasification oxygen carrier," Energy, Elsevier, vol. 190(C).
    17. Pereira, Emanuele Graciosa & da Silva, Jadir Nogueira & de Oliveira, Jofran L. & Machado, Cássio S., 2012. "Sustainable energy: A review of gasification technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4753-4762.
    18. Li, Bin & Magoua Mbeugang, Christian Fabrice & Huang, Yong & Liu, Dongjing & Wang, Qian & Zhang, Shu, 2022. "A review of CaO based catalysts for tar removal during biomass gasification," Energy, Elsevier, vol. 244(PB).
    19. Li, Jian & Jiao, Liguo & Tao, Junyu & Chen, Guanyi & Hu, Jianli & Yan, Beibei & Mansour, Mohy & Guo, Yaoyu & Ye, Peiwen & Ding, Zheng & Yu, Tianxiao, 2020. "Can microwave treat biomass tar? A comprehensive study based on experimental and net energy analysis," Applied Energy, Elsevier, vol. 272(C).
    20. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:7:p:3167-3181:d:26830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.