IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v115y2014icp9-16.html
   My bibliography  Save this article

Pilot verification of a low-tar two-stage coal gasification process with a fluidized bed pyrolyzer and fixed bed gasifier

Author

Listed:
  • Zeng, Xi
  • Wang, Fang
  • Li, Hongling
  • Wang, Yin
  • Dong, Li
  • Yu, Jian
  • Xu, Guangwen

Abstract

A 50kg/h autothermal two-stage gasifier, consisting of a fluidized bed (FB) pyrolyzer and a downdraft fixed-bed gasifier, has been designed and built according to our previous laboratory researches. In the experiments, lignite gasification was performed in this innovative two-stage gasifier to demonstrate the process feasibility for clean fuel gas production. The results showed that when keeping the reaction temperatures of the FB pyrolyzer and downdraft fixed bed gasifier respectively at about 860°C and 1100°C, the tar content in the produced fuel gas from the two-stage gasifier was effectively lowered to 84mg/Nm3 and the heating value of fuel gas was close to 4.186MJ/Nm3. Compared with the tar produced in the FB pyrolyzer, the tar from the downdraft fixed bed gasifier had obviously higher content of light oil components and lower content of heavy components, showing essentially an effective catalytic reforming of tar components by the hot char bed of the downdraft fixed bed gasifier.

Suggested Citation

  • Zeng, Xi & Wang, Fang & Li, Hongling & Wang, Yin & Dong, Li & Yu, Jian & Xu, Guangwen, 2014. "Pilot verification of a low-tar two-stage coal gasification process with a fluidized bed pyrolyzer and fixed bed gasifier," Applied Energy, Elsevier, vol. 115(C), pages 9-16.
  • Handle: RePEc:eee:appene:v:115:y:2014:i:c:p:9-16
    DOI: 10.1016/j.apenergy.2013.10.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913008829
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.10.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henriksen, Ulrik & Ahrenfeldt, Jesper & Jensen, Torben Kvist & Gøbel, Benny & Bentzen, Jens Dall & Hindsgaul, Claus & Sørensen, Lasse Holst, 2006. "The design, construction and operation of a 75kW two-stage gasifier," Energy, Elsevier, vol. 31(10), pages 1542-1553.
    2. Anis, Samsudin & Zainal, Z.A., 2011. "Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2355-2377, June.
    3. Ahmed, Tigabwa Y. & Ahmad, Murni M. & Yusup, Suzana & Inayat, Abrar & Khan, Zakir, 2012. "Mathematical and computational approaches for design of biomass gasification for hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2304-2315.
    4. Hamel, Stefan & Hasselbach, Holger & Weil, Steffen & Krumm, Wolfgang, 2007. "Autothermal two-stage gasification of low-density waste-derived fuels," Energy, Elsevier, vol. 32(2), pages 95-107.
    5. Xiao, Ruirui & Chen, Xueli & Wang, Fuchen & Yu, Guangsuo, 2010. "Pyrolysis pretreatment of biomass for entrained-flow gasification," Applied Energy, Elsevier, vol. 87(1), pages 149-155, January.
    6. Munajat, Nur Farizan & Erlich, Catharina & Fakhrai, Reza & Fransson, Torsten H., 2012. "Influence of water vapour and tar compound on laminar flame speed of gasified biomass gas," Applied Energy, Elsevier, vol. 98(C), pages 114-121.
    7. Li, Chunshan & Suzuki, Kenzi, 2009. "Tar property, analysis, reforming mechanism and model for biomass gasification--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 594-604, April.
    8. Ruiz, J.A. & Juárez, M.C. & Morales, M.P. & Muñoz, P. & Mendívil, M.A., 2013. "Biomass gasification for electricity generation: Review of current technology barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 174-183.
    9. Nakata, Toshihiko & Sato, Takemi & Wang, Hao & Kusunoki, Tomoya & Furubayashi, Takaaki, 2011. "Modeling technological learning and its application for clean coal technologies in Japan," Applied Energy, Elsevier, vol. 88(1), pages 330-336, January.
    10. Chen, Hongfang & Namioka, Tomoaki & Yoshikawa, Kunio, 2011. "Characteristics of tar, NOx precursors and their absorption performance with different scrubbing solvents during the pyrolysis of sewage sludge," Applied Energy, Elsevier, vol. 88(12), pages 5032-5041.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Unyaphan, Siriwat & Tarnpradab, Thanyawan & Takahashi, Fumitake & Yoshikawa, Kunio, 2017. "Improvement of tar removal performance of oil scrubber by producing syngas microbubbles," Applied Energy, Elsevier, vol. 205(C), pages 802-812.
    2. Chen, Zhaohui & Li, Yunjia & Lai, Dengguo & Geng, Sulong & Zhou, Qi & Gao, Shiqiu & Xu, Guangwen, 2018. "Coupling coal pyrolysis with char gasification in a multi-stage fluidized bed to co-produce high-quality tar and syngas," Applied Energy, Elsevier, vol. 215(C), pages 348-355.
    3. Wang, Fang & Zeng, Xi & Sun, Yanlin & Zhang, Juwei & Zhao, Zhigang & Wang, Yonggang & Xu, Guangwen, 2015. "Jetting pre-oxidation fluidized bed gasification process for caking coal: Fundamentals and pilot test," Applied Energy, Elsevier, vol. 160(C), pages 80-87.
    4. Wang, Chao & Zhu, Lianfeng & Zhang, Mengjuan & Han, Zhennan & Jia, Xin & Bai, Dingrong & Duo, Wenli & Bi, Xiaotao & Abudula, Abuliti & Guan, Guoqing & Xu, Guangwen, 2022. "A two-stage circulated fluidized bed process to minimize tar generation of biomass gasification for fuel gas production," Applied Energy, Elsevier, vol. 323(C).
    5. Rahman, Md Mashiur & Aravindakshan, Sreejith & Matin, Md Abdul, 2021. "Design and performance evaluation of an inclined nozzle and combustor of a downdraft moving bed gasifier for tar reduction," Renewable Energy, Elsevier, vol. 172(C), pages 239-250.
    6. Wenning Zhou & Hailong Huo & Qinye Li & Ruifeng Dou & Xunliang Liu, 2019. "An Improved Comprehensive Model of Pyrolysis of Large Coal Particles to Predict Temperature Variation and Volatile Component Yields," Energies, MDPI, vol. 12(5), pages 1-15, March.
    7. Situmorang, Yohanes Andre & Zhao, Zhongkai & Yoshida, Akihiro & Kasai, Yutaka & Abudula, Abuliti & Guan, Guoqing, 2019. "Potential power generation on a small-scale separated-type biomass gasification system," Energy, Elsevier, vol. 179(C), pages 19-29.
    8. Jeong, Hyo Jae & Seo, Dong Kyun & Hwang, Jungho, 2014. "CFD modeling for coal size effect on coal gasification in a two-stage commercial entrained-bed gasifier with an improved char gasification model," Applied Energy, Elsevier, vol. 123(C), pages 29-36.
    9. Yuan, XiangZhou & Fan, ShuMin & Choi, Seung Wan & Kim, Hyung-Taek & Lee, Ki Bong, 2017. "Potassium catalyst recovery process and performance evaluation of the recovered catalyst in the K2CO3-catalyzed steam gasification system," Applied Energy, Elsevier, vol. 195(C), pages 850-860.
    10. Silva, Isabelly P. & Lima, Rafael M.A. & Santana, Hortência E.P. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2022. "Development of a semi-empirical model for woody biomass gasification based on stoichiometric thermodynamic equilibrium model," Energy, Elsevier, vol. 241(C).
    11. Niu, Miaomiao & Huang, Yaji & Jin, Baosheng & Liang, Shaohua & Dong, Qing & Gu, Haiming & Sun, Rongyue, 2019. "A novel two-stage enriched air biomass gasification for producing low-tar high heating value fuel gas: Pilot verification and performance analysis," Energy, Elsevier, vol. 173(C), pages 511-522.
    12. Fang, Neng & Li, Zhengqi & Xie, Cheng & Liu, Shuxuan & Lu, Yue & Zeng, Lingyan & Chen, Zhichao, 2021. "Influence of the multi-burner bias angle on the air/particle flow characteristics in an improved fly ash entrained-flow gasifier," Energy, Elsevier, vol. 234(C).
    13. Fang, Neng & Li, Zhengqi & Xie, Cheng & Liu, Shuxuan & Zeng, Lingyan & Chen, Zhichao & Zhang, Bin, 2020. "The application of fly ash gasification for purifying the raw syngas in an industrial-scale entrained flow gasifier," Energy, Elsevier, vol. 195(C).
    14. Wiinikka, Henrik & Wennebro, Jonas & Gullberg, Marcus & Pettersson, Esbjörn & Weiland, Fredrik, 2017. "Pure oxygen fixed-bed gasification of wood under high temperature (>1000°C) freeboard conditions," Applied Energy, Elsevier, vol. 191(C), pages 153-162.
    15. Choi, Young-Kon & Mun, Tae-Young & Cho, Min-Hwan & Kim, Joo-Sik, 2016. "Gasification of dried sewage sludge in a newly developed three-stage gasifier: Effect of each reactor temperature on the producer gas composition and impurity removal," Energy, Elsevier, vol. 114(C), pages 121-128.
    16. Choi, Young-Kon & Ko, Ji-Ho & Kim, Joo-Sik, 2017. "A new type three-stage gasification of dried sewage sludge: Effects of equivalence ratio, weight ratio of activated carbon to feed, and feed rate on gas composition and tar, NH3, and H2S removal and r," Energy, Elsevier, vol. 118(C), pages 139-146.
    17. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.
    18. Rizkiana, Jenny & Guan, Guoqing & Widayatno, Wahyu Bambang & Hao, Xiaogang & Wang, Zhongde & Zhang, Zhonglin & Abudula, Abuliti, 2015. "Oil production from mild pyrolysis of low-rank coal in molten salts media," Applied Energy, Elsevier, vol. 154(C), pages 944-950.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    2. Hu, Fu-Xiang & Yang, Guo-Hua & Ding, Guo-Zhu & Li, Zhen & Du, Ka-Shuai & Hu, Zhi-Fa & Tian, Su-Rui, 2016. "Experimental study on catalytic cracking of model tar compounds in a dual layer granular bed filter," Applied Energy, Elsevier, vol. 170(C), pages 47-57.
    3. Pulla Rose Havilah & Amit Kumar Sharma & Gopalakrishnan Govindasamy & Leonidas Matsakas & Alok Patel, 2022. "Biomass Gasification in Downdraft Gasifiers: A Technical Review on Production, Up-Gradation and Application of Synthesis Gas," Energies, MDPI, vol. 15(11), pages 1-19, May.
    4. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    5. Li, Jian & Tao, Junyu & Yan, Beibei & Jiao, Liguo & Chen, Guanyi & Hu, Jianli, 2021. "Review of microwave-based treatments of biomass gasification tar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Pereira, Emanuele Graciosa & da Silva, Jadir Nogueira & de Oliveira, Jofran L. & Machado, Cássio S., 2012. "Sustainable energy: A review of gasification technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4753-4762.
    7. Ud Din, Zia & Zainal, Z.A., 2017. "The fate of SOFC anodes under biomass producer gas contaminants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1050-1066.
    8. Giulio Allesina & Simone Pedrazzi, 2021. "Barriers to Success: A Technical Review on the Limits and Possible Future Roles of Small Scale Gasifiers," Energies, MDPI, vol. 14(20), pages 1-23, October.
    9. Song, Hee Gaen & Chun, Young Nam, 2020. "Tar decomposition-reforming conversion on microwave-heating carbon receptor," Energy, Elsevier, vol. 199(C).
    10. Ahsanullah Soomro & Shiyi Chen & Shiwei Ma & Wenguo Xiang, 2018. "Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process," Energy & Environment, , vol. 29(6), pages 839-867, September.
    11. Yepes Maya, Diego Mauricio & Silva Lora, Electo Eduardo & Andrade, Rubenildo Vieira & Ratner, Albert & Martínez Angel, Juan Daniel, 2021. "Biomass gasification using mixtures of air, saturated steam, and oxygen in a two-stage downdraft gasifier. Assessment using a CFD modeling approach," Renewable Energy, Elsevier, vol. 177(C), pages 1014-1030.
    12. Ghorbani, Saba & Atashkari, Kazem & Borji, Mehdi, 2022. "Three-stage model-based evaluation of a downdraft biomass gasifier," Renewable Energy, Elsevier, vol. 194(C), pages 734-745.
    13. Huang, Zhen & Zheng, Anqing & Deng, Zhengbing & Wei, Guoqiang & Zhao, Kun & Chen, Dezhen & He, Fang & Zhao, Zengli & Li, Haibin & Li, Fanxing, 2020. "In-situ removal of toluene as a biomass tar model compound using NiFe2O4 for application in chemical looping gasification oxygen carrier," Energy, Elsevier, vol. 190(C).
    14. Sunil Thapa & Prakashbhai R. Bhoi & Ajay Kumar & Raymond L. Huhnke, 2017. "Effects of Syngas Cooling and Biomass Filter Medium on Tar Removal," Energies, MDPI, vol. 10(3), pages 1-12, March.
    15. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Rakesh N, & Dasappa, S., 2018. "A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1045-1064.
    18. Nasir Uddin, Md. & Daud, W.M.A. Wan & Abbas, Hazim F., 2013. "Potential hydrogen and non-condensable gases production from biomass pyrolysis: Insights into the process variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 204-224.
    19. Nakamura, Shunsuke & Kitano, Shigeru & Yoshikawa, Kunio, 2016. "Biomass gasification process with the tar removal technologies utilizing bio-oil scrubber and char bed," Applied Energy, Elsevier, vol. 170(C), pages 186-192.
    20. Raman, P. & Ram, N.K. & Gupta, Ruchi, 2013. "A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis," Energy, Elsevier, vol. 54(C), pages 302-314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:115:y:2014:i:c:p:9-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.