IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i3p1764-1793d24396.html
   My bibliography  Save this article

Efficiency of Edible Agriculture in Canada and the U.S. Over the Past Three and Four Decades

Author

Listed:
  • Abbe Hamilton

    (College of Environmental Science and Forestry, State University of New York, 1 Forestry Dr. Syracuse, New York, NY 13210, USA)

  • Stephen B. Balogh

    (College of Environmental Science and Forestry, State University of New York, 1 Forestry Dr. Syracuse, New York, NY 13210, USA)

  • Adrienna Maxwell

    (College of Environmental Science and Forestry, State University of New York, 1 Forestry Dr. Syracuse, New York, NY 13210, USA)

  • Charles A. S. Hall

    (College of Environmental Science and Forestry, State University of New York, 1 Forestry Dr. Syracuse, New York, NY 13210, USA)

Abstract

We examine technological progress in the US and Canada to answer the question: has the efficiency (e.g., the edible energy efficiency, or EEE) for producing agricultural products in the US and Canada increased in recent decades? Specifically, we determined the energy efficiency of agriculture at the farm gate in recent decades by dividing the outputs (the total annual crop and animal output in energy units minus the feed used for animal production and the grain used for ethanol production) by the energy inputs: all the energy used by the nation to produce food (the energy used to generate and apply the fertilizer, pesticides, seed and to operate machinery) minus the energy inputs to produce grain for ethanol. Our data comes primarily from national and international agricultural censuses. Our study found that the energy efficiency of US agriculture has more than doubled from 0.8:1 in 1970 to 2.2:1 by 2000, then increased more slowly to 2.3:1 by 2009. The energy efficiency of the agricultural sector in Canada has not changed appreciably since 1980, and has varied about a mean of 2:1 from 1981 to 2009. Our study found that EEE improvements in the US could be attributable in part to advancements in crop production per hectare, and lower direct fuel consumption, but also a greater proportion of less energy-intensive corn and changes to the diet of livestock (e.g., increased use of meals and other by-products which have increased the availability of grain). Thus increases due to technological progress alone for the last several decades appear small, less than one percent a year.

Suggested Citation

  • Abbe Hamilton & Stephen B. Balogh & Adrienna Maxwell & Charles A. S. Hall, 2013. "Efficiency of Edible Agriculture in Canada and the U.S. Over the Past Three and Four Decades," Energies, MDPI, vol. 6(3), pages 1-30, March.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:3:p:1764-1793:d:24396
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/3/1764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/3/1764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miranowski, John, 2005. "Energy Consumption in US Agriculture," Staff General Research Papers Archive 12627, Iowa State University, Department of Economics.
    2. Mushtaq, Shahbaz & Maraseni, Tek Narayan & Maroulis, Jerry & Hafeez, Mohsin, 2009. "Energy and water tradeoffs in enhancing food security: A selective international assessment," Energy Policy, Elsevier, vol. 37(9), pages 3635-3644, September.
    3. Shapouri, Hosein & Duffield, James A. & Wang, Michael Q., 2002. "The Energy Balance of Corn Ethanol: An Update," Agricultural Economic Reports 34075, United States Department of Agriculture, Economic Research Service.
    4. Karkacier, Osman & Gokalp Goktolga, Z. & Cicek, Adnan, 2006. "A regression analysis of the effect of energy use in agriculture," Energy Policy, Elsevier, vol. 34(18), pages 3796-3800, December.
    5. Cao, Shuyan & Xie, Gaodi & Zhen, Lin, 2010. "Total embodied energy requirements and its decomposition in China's agricultural sector," Ecological Economics, Elsevier, vol. 69(7), pages 1396-1404, May.
    6. AfDB AfDB, . "Annual Report 2012," Annual Report, African Development Bank, number 461.
    7. David Murphy & Charles Hall & Bobby Powers, 2011. "New perspectives on the energy return on (energy) investment (EROI) of corn ethanol," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(1), pages 179-202, February.
    8. Ali S. Pracha & Timothy A. Volk, 2011. "An Edible Energy Return on Investment (EEROI) Analysis of Wheat and Rice in Pakistan," Sustainability, MDPI, vol. 3(12), pages 1-34, December.
    9. Minten, Bart & Barrett, Christopher B., 2008. "Agricultural Technology, Productivity, and Poverty in Madagascar," World Development, Elsevier, vol. 36(5), pages 797-822, May.
    10. Canning, Patrick N. & Charles, Ainsley & Huang, Sonja & Polenske, Karen R. & Waters, Arnold, 2010. "Energy Use in the U.S. Food System," Economic Research Report 59381, United States Department of Agriculture, Economic Research Service.
    11. Canning, Patrick N., 2010. "Fuel for Food: Energy Use in the U.S. Food System," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, pages 1-6.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bartłomiej Bajan & Aldona Mrówczyńska-Kamińska & Walenty Poczta, 2020. "Economic Energy Efficiency of Food Production Systems," Energies, MDPI, vol. 13(21), pages 1-16, November.
    2. Rae Zimmerman & Quanyan Zhu & Carolyn Dimitri, 2016. "Promoting resilience for food, energy, and water interdependencies," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 50-61, March.
    3. Reynir Smari Atlason & Ragnar Ingi Danner & Runar Unnthorsson & Gudmundur Valur Oddsson & Fernando Sustaeta & Ragnheidur Thorarinsdottir, 2017. "Energy Return on Investment for Aquaponics: Case Studies from Iceland and Spain," Biophysical Economics and Resource Quality, Springer, vol. 2(1), pages 1-12, March.
    4. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    5. Souhil Harchaoui & Petros Chatzimpiros, 2018. "Can Agriculture Balance Its Energy Consumption and Continue to Produce Food? A Framework for Assessing Energy Neutrality Applied to French Agriculture," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
    6. Galán, E. & Padró, R. & Marco, I. & Tello, E. & Cunfer, G. & Guzmán, G.I. & González de Molina, M. & Krausmann, F. & Gingrich, S. & Sacristán, V. & Moreno-Delgado, D., 2016. "Widening the analysis of Energy Return on Investment (EROI) in agro-ecosystems: Socio-ecological transitions to industrialized farm systems (the Vallès County, Catalonia, c.1860 and 1999)," Ecological Modelling, Elsevier, vol. 336(C), pages 13-25.
    7. Bartłomiej Bajan & Joanna Łukasiewicz & Agnieszka Poczta-Wajda & Walenty Poczta, 2021. "Edible Energy Production and Energy Return on Investment—Long-Term Analysis of Global Changes," Energies, MDPI, vol. 14(4), pages 1-16, February.
    8. Jordan, Carl F., 2019. "Energy Flow and Feedback Control in Ecological and Economic Food Systems," Ecological Economics, Elsevier, vol. 156(C), pages 91-97.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    2. Joanna Šukasiewicz & Bartłomiej Bajan, 2024. "Farm Gate Energy Intensity of Food Production in Poland - Considering the Physical and Economic Aspects of Production," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 216-225, July.
    3. Boehm, Rebecca & Wilde, Parke E. & Ver Ploeg, Michele & Costello, Christine & Cash, Sean B., 2018. "A Comprehensive Life Cycle Assessment of Greenhouse Gas Emissions from U.S. Household Food Choices," Food Policy, Elsevier, vol. 79(C), pages 67-76.
    4. Maria Zuba-Ciszewska & Aneta Suchoń, 2024. "The Role of State Aid in the Achievement of the Energy Efficiency Objective in the Food Industry—The Example of Poland," Energies, MDPI, vol. 17(12), pages 1-32, June.
    5. Hilario Becerril & Ignacio De los Rios, 2016. "Energy Efficiency Strategies for Ecological Greenhouses: Experiences from Murcia (Spain)," Energies, MDPI, vol. 9(11), pages 1-23, October.
    6. Canning, Patrick & Rehkamp, Sarah, 2016. "The Effects of a CO2 Emissions Tax on American Diets," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235928, Agricultural and Applied Economics Association.
    7. Peters, Christian J. & Picardy, Jamie A. & Darrouzet-Nardi, Amelia & Griffin, Timothy S., 2014. "Feed conversions, ration compositions, and land use efficiencies of major livestock products in U.S. agricultural systems," Agricultural Systems, Elsevier, vol. 130(C), pages 35-43.
    8. Sabine O’Hara & Sigamoney Naicker, 2022. "Local Commitment and Global Reach: Advancing Sustainable Capacity Building in Higher Education," World, MDPI, vol. 3(4), pages 1-19, October.
    9. Yang, Q. & Chen, G.Q., 2012. "Nonrenewable energy cost of corn-ethanol in China," Energy Policy, Elsevier, vol. 41(C), pages 340-347.
    10. Baboo Lesh Gowreesunker & Savvas Tassou & James Atuonwu, 2018. "Cost-Energy Optimum Pathway for the UK Food Manufacturing Industry to Meet the UK National Emission Targets," Energies, MDPI, vol. 11(10), pages 1-19, October.
    11. Rehkamp, Sarah & Canning, Patrick, 2016. "The Effects of American Diets on Food System Energy Use," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235896, Agricultural and Applied Economics Association.
    12. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    13. Carlos Francisco Terneus Páez & Oswaldo Viteri Salazar, 2022. "The Water–Energy–Food Nexus: An Analysis of Food Sustainability in Ecuador," Resources, MDPI, vol. 11(10), pages 1-21, September.
    14. Bartłomiej Bajan & Joanna Łukasiewicz & Agnieszka Poczta-Wajda & Walenty Poczta, 2021. "Edible Energy Production and Energy Return on Investment—Long-Term Analysis of Global Changes," Energies, MDPI, vol. 14(4), pages 1-16, February.
    15. Joseph R. Burger & James H. Brown & John W. Day & Tatiana P. Flanagan & Eric D. Roy, 2019. "The Central Role of Energy in the Urban Transition: Global Challenges for Sustainability," Biophysical Economics and Resource Quality, Springer, vol. 4(1), pages 1-13, March.
    16. Souhil Harchaoui & Petros Chatzimpiros, 2018. "Energy, Nitrogen, and Farm Surplus Transitions in Agriculture from Historical Data Modeling. France, 1882–2013," Post-Print hal-02999180, HAL.
    17. Rae Zimmerman & Quanyan Zhu & Carolyn Dimitri, 2016. "Promoting resilience for food, energy, and water interdependencies," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 50-61, March.
    18. Schramski, J.R. & Jacobsen, K.L. & Smith, T.W. & Williams, M.A. & Thompson, T.M., 2013. "Energy as a potential systems-level indicator of sustainability in organic agriculture: Case study model of a diversified, organic vegetable production system," Ecological Modelling, Elsevier, vol. 267(C), pages 102-114.
    19. Erika Allen Wolters & Brent S. Steel & Sydney Anderson & Heather Moline, 2021. "The Future of Food: Understanding Public Preferences for the Management of Agricultural Resources," IJERPH, MDPI, vol. 18(13), pages 1-20, June.
    20. Wang, Yixuan & Desai, Saumya & Kemmerling, Leonie & Trmcic, Aljosa & Wiedmann, Martin & Adalja, Aaron A., 2024. "Dynamic pricing to reducing dairy food waste: Evidence from lab and grocery store experiments," 2024 Annual Meeting, July 28-30, New Orleans, LA 343665, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:3:p:1764-1793:d:24396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.