IDEAS home Printed from https://ideas.repec.org/a/spr/bioerq/v2y2017i1d10.1007_s41247-017-0020-5.html
   My bibliography  Save this article

Energy Return on Investment for Aquaponics: Case Studies from Iceland and Spain

Author

Listed:
  • Reynir Smari Atlason

    (University of Southern Denmark)

  • Ragnar Ingi Danner

    (University of Iceland)

  • Runar Unnthorsson

    (University of Iceland)

  • Gudmundur Valur Oddsson

    (University of Iceland)

  • Fernando Sustaeta

    (Breeded in Green Ltd.)

  • Ragnheidur Thorarinsdottir

    (University of Iceland)

Abstract

Energy use in food production is linked to environmental impact, as most agricultural practices are reliant on fossil fuels. It is therefore of importance to locate food production methods that are less energy intensive than current methods and are also less polluting. Energy return on investment (EROI) is the ratio between the energy used to construct and maintain a given energy production system, against the energy that is provided by the system. Aquaponic systems have environmental benefits over conventional aquaculture systems as the waste is used within the system as fertilizer for plants. In this paper, we analyse the operational performance of three aquaponic systems. Two systems were located in Iceland, and one in northern Spain. We also analyse the energy output with respect to edible protein contents. After 10 years of partially simulated operation, the EROI of the Hondarribia, Sudarvogur and Akur systems was 0.055:1, 0.016:1 and 0.106:1, respectively. Our results indicate that aquaponic operations benefit from operating within a greenhouse and that direct electricity consumption is the largest energy input in the aquaponics systems. The aquaponics systems studied returned one half to one tenth the EROI as compared to conventional fisheries or aquaculture.

Suggested Citation

  • Reynir Smari Atlason & Ragnar Ingi Danner & Runar Unnthorsson & Gudmundur Valur Oddsson & Fernando Sustaeta & Ragnheidur Thorarinsdottir, 2017. "Energy Return on Investment for Aquaponics: Case Studies from Iceland and Spain," Biophysical Economics and Resource Quality, Springer, vol. 2(1), pages 1-12, March.
  • Handle: RePEc:spr:bioerq:v:2:y:2017:i:1:d:10.1007_s41247-017-0020-5
    DOI: 10.1007/s41247-017-0020-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41247-017-0020-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41247-017-0020-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abbe Hamilton & Stephen B. Balogh & Adrienna Maxwell & Charles A. S. Hall, 2013. "Efficiency of Edible Agriculture in Canada and the U.S. Over the Past Three and Four Decades," Energies, MDPI, vol. 6(3), pages 1-30, March.
    2. Simon Goddek & Boris Delaide & Utra Mankasingh & Kristin Vala Ragnarsdottir & Haissam Jijakli & Ragnheidur Thorarinsdottir, 2015. "Challenges of Sustainable and Commercial Aquaponics," Sustainability, MDPI, vol. 7(4), pages 1-26, April.
    3. Mads V. Markussen & Hanne Østergård, 2013. "Energy Analysis of the Danish Food Production System: Food-EROI and Fossil Fuel Dependency," Energies, MDPI, vol. 6(8), pages 1-17, August.
    4. Lambert, Jessica G. & Hall, Charles A.S. & Balogh, Stephen & Gupta, Ajay & Arnold, Michelle, 2014. "Energy, EROI and quality of life," Energy Policy, Elsevier, vol. 64(C), pages 153-167.
    5. Atlason, Reynir & Unnthorsson, Runar, 2014. "Ideal EROI (energy return on investment) deepens the understanding of energy systems," Energy, Elsevier, vol. 67(C), pages 241-245.
    6. Jordi Guillen & Anna Cheilari & Dimitrios Damalas & Thomas Barbas, 2016. "Oil for Fish: An Energy Return on Investment Analysis of Selected European Union Fishing Fleets," Journal of Industrial Ecology, Yale University, vol. 20(1), pages 145-153, February.
    7. Ali S. Pracha & Timothy A. Volk, 2011. "An Edible Energy Return on Investment (EEROI) Analysis of Wheat and Rice in Pakistan," Sustainability, MDPI, vol. 3(12), pages 1-34, December.
    8. Atlason, R.S. & Unnthorsson, R., 2013. "Hot water production improves the energy return on investment of geothermal power plants," Energy, Elsevier, vol. 51(C), pages 273-280.
    9. David J. Murphy & Charles A.S. Hall & Michael Dale & Cutler Cleveland, 2011. "Order from Chaos: A Preliminary Protocol for Determining the EROI of Fuels," Sustainability, MDPI, vol. 3(10), pages 1-20, October.
    10. Berg, Hakan & Michelsen, Petra & Troell, Max & Folke, Carl & Kautsky, Nils, 1996. "Managing aquaculture for sustainability in tropical Lake Kariba, Zimbabwe," Ecological Economics, Elsevier, vol. 18(2), pages 141-159, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartłomiej Bajan & Joanna Łukasiewicz & Agnieszka Poczta-Wajda & Walenty Poczta, 2021. "Edible Energy Production and Energy Return on Investment—Long-Term Analysis of Global Changes," Energies, MDPI, vol. 14(4), pages 1-16, February.
    2. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    3. Zhaoyang Kong & Xiucheng Dong & Bo Xu & Rui Li & Qiang Yin & Cuifang Song, 2015. "EROI Analysis for Direct Coal Liquefaction without and with CCS: The Case of the Shenhua DCL Project in China," Energies, MDPI, vol. 8(2), pages 1-22, January.
    4. Salehi, Mohammad & Khajehpour, Hossein & Saboohi, Yadollah, 2020. "Extended Energy Return on Investment of multiproduct energy systems," Energy, Elsevier, vol. 192(C).
    5. Atlason, Reynir Smari, 2018. "EROI and the Icelandic society," Energy Policy, Elsevier, vol. 120(C), pages 52-57.
    6. Souhil Harchaoui & Petros Chatzimpiros, 2018. "Energy, Nitrogen, and Farm Surplus Transitions in Agriculture from Historical Data Modeling. France, 1882–2013," Post-Print hal-02999180, HAL.
    7. Galán, E. & Padró, R. & Marco, I. & Tello, E. & Cunfer, G. & Guzmán, G.I. & González de Molina, M. & Krausmann, F. & Gingrich, S. & Sacristán, V. & Moreno-Delgado, D., 2016. "Widening the analysis of Energy Return on Investment (EROI) in agro-ecosystems: Socio-ecological transitions to industrialized farm systems (the Vallès County, Catalonia, c.1860 and 1999)," Ecological Modelling, Elsevier, vol. 336(C), pages 13-25.
    8. Florian Fizaine & Victor Court, 2016. "The energy-economic growth relationship: a new insight from the EROI perspective," Working Papers 1601, Chaire Economie du climat.
    9. Charles Guay-Boutet, 2023. "Estimating the Disaggregated Standard EROI of Canadian Oil Sands Extracted via Open-pit Mining, 1997–2016," Biophysical Economics and Resource Quality, Springer, vol. 8(1), pages 1-21, March.
    10. Carey W. King, 2016. "Information Theory to Assess Relations Between Energy and Structure of the U.S. Economy Over Time," Biophysical Economics and Resource Quality, Springer, vol. 1(2), pages 1-33, December.
    11. Lambert, Jessica G. & Hall, Charles A.S. & Balogh, Stephen & Gupta, Ajay & Arnold, Michelle, 2014. "Energy, EROI and quality of life," Energy Policy, Elsevier, vol. 64(C), pages 153-167.
    12. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    13. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    14. Elise Dupont & Marc Germain & Hervé Jeanmart, 2021. "Estimate of the Societal Energy Return on Investment (EROI)," Biophysical Economics and Resource Quality, Springer, vol. 6(1), pages 1-14, March.
    15. Palmer, Graham, 2017. "An input-output based net-energy assessment of an electricity supply industry," Energy, Elsevier, vol. 141(C), pages 1504-1516.
    16. Marco Vittorio Ecclesia & João Santos & Paul E. Brockway & Tiago Domingos, 2022. "A Comprehensive Societal Energy Return on Investment Study of Portugal Reveals a Low but Stable Value," Energies, MDPI, vol. 15(10), pages 1-22, May.
    17. Hongshuo Yan & Lianyong Feng & Jianliang Wang & Yuanying Chi & Yue Ma, 2021. "A Comprehensive Net Energy Analysis and Outlook of Energy System in China," Biophysical Economics and Resource Quality, Springer, vol. 6(4), pages 1-14, December.
    18. Wiraditma Prananta & Ida Kubiszewski, 2021. "Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI)," Energies, MDPI, vol. 14(10), pages 1-15, May.
    19. Feng, Jingxuan & Feng, Lianyong & Wang, Jianliang & King, Carey W., 2018. "Modeling the point of use EROI and its implications for economic growth in China," Energy, Elsevier, vol. 144(C), pages 232-242.
    20. Luciano Celi, 2021. "Deriving EROI for Thirty Large Oil Companies Using the CO2 Proxy from 1999 to 2018," Biophysical Economics and Resource Quality, Springer, vol. 6(4), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:bioerq:v:2:y:2017:i:1:d:10.1007_s41247-017-0020-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.