IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p554-d1576548.html
   My bibliography  Save this article

Voltage Unbalance Control Strategy for Local Shading Photovoltaic Grid-Connected System

Author

Listed:
  • Pingye Wan

    (School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 201209, China)

  • Miao Huang

    (School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 201209, China)

  • Jinshan Mou

    (Shanghai Energy Technology Development Co., Ltd., Shanghai 200233, China)

  • Lili Tao

    (School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 201209, China)

  • Shuping Zhang

    (School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 201209, China)

  • Zhihua Hu

    (School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 201209, China)

Abstract

In view of the sudden grid voltage distortions, such as voltage sags and unbalances, that may occur in photovoltaic (PV) grid-connected systems under local shading conditions, this paper proposes a control strategy integrating a linear active disturbance rejection controller (LADRC)-based virtual synchronous generator (VSG) and an active disturbance rejection controller (ADRC)-based dynamic voltage restorer (DVR). To enhance the stability and response speed of the PV inverter system, a novel LADRC-based voltage–current dual closed-loop control strategy with pre-synchronization is designed, ensuring stable operation of the inverter and load. To address the overshooting issues found in traditional PI control under local shading, the ADRC-based DVR compensates for PV system voltage fluctuations, achieving rapid voltage distortion compensation and ensuring grid-connected system safety. Simulink experiments verify the feasibility and effectiveness of the proposed control strategy in improving transient voltage quality in PV systems affected by local shading. The total harmonic distortion rates of voltage and current are both less than 0.5%, which significantly improves the performance compared to existing research.

Suggested Citation

  • Pingye Wan & Miao Huang & Jinshan Mou & Lili Tao & Shuping Zhang & Zhihua Hu, 2025. "Voltage Unbalance Control Strategy for Local Shading Photovoltaic Grid-Connected System," Energies, MDPI, vol. 18(3), pages 1-24, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:554-:d:1576548
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ji, Feng & Xu, Z., 2024. "Increased LVRT capability for VSG-based grid-tied converters," Applied Energy, Elsevier, vol. 369(C).
    2. Zhi-Kai Fan & Annisa Setianingrum & Kuo-Lung Lian & Suwarno Suwarno, 2024. "A Hybrid Approach for Photovoltaic Maximum Power Tracking under Partial Shading Using Honey Badger and Genetic Algorithms," Energies, MDPI, vol. 17(16), pages 1-16, August.
    3. Musong L. Katche & Augustine B. Makokha & Siagi O. Zachary & Muyiwa S. Adaramola, 2023. "A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems," Energies, MDPI, vol. 16(5), pages 1-23, February.
    4. Ali Moghassemi & Sanjeevikumar Padmanaban, 2020. "Dynamic Voltage Restorer (DVR): A Comprehensive Review of Topologies, Power Converters, Control Methods, and Modified Configurations," Energies, MDPI, vol. 13(16), pages 1-38, August.
    5. Jeongwon Han & Hyunjae Lee & Jingeun Shon, 2024. "Improvement of Power Production Efficiency Following the Application of the GD InC Maximum Power Point Tracking Method in Photovoltaic Systems," Energies, MDPI, vol. 17(20), pages 1-12, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holman Bueno-Contreras & Germán Andrés Ramos & Ramon Costa-Castelló, 2021. "Power Quality Improvement through a UPQC and a Resonant Observer-Based MIMO Control Strategy," Energies, MDPI, vol. 14(21), pages 1-21, October.
    2. Salah Mahdi Thajeel & Doğu Çağdaş Atilla, 2025. "Reinforcement Neural Network-Based Grid-Integrated PV Control and Battery Management System," Energies, MDPI, vol. 18(3), pages 1-20, January.
    3. Boyan Huang & Kai Song & Shulin Jiang & Zhenqing Zhao & Zhiqiang Zhang & Cong Li & Jiawen Sun, 2024. "A Robust Salp Swarm Algorithm for Photovoltaic Maximum Power Point Tracking Under Partial Shading Conditions," Mathematics, MDPI, vol. 12(24), pages 1-17, December.
    4. Larbi Chrifi-Alaoui & Saïd Drid & Mohammed Ouriagli & Driss Mehdi, 2023. "Overview of Photovoltaic and Wind Electrical Power Hybrid Systems," Energies, MDPI, vol. 16(12), pages 1-35, June.
    5. Aydogmus, Omur & Boztas, Gullu & Celikel, Resat, 2022. "Design and analysis of a flywheel energy storage system fed by matrix converter as a dynamic voltage restorer," Energy, Elsevier, vol. 238(PB).
    6. Soroush Esmaeili & Kasra Ghobadi & Hassan Zare & Mohsin Jamil & Ashraf Ali Khan & Amin Mahmoudi, 2022. "A Trans-Inverse Magnetic Coupling Single-Phase AC-AC Converter," Energies, MDPI, vol. 15(12), pages 1-25, June.
    7. Zulfiqar Ali & Syed Zagam Abbas & Anzar Mahmood & Syed Wajahat Ali & Syed Bilal Javed & Chun-Lien Su, 2023. "A Study of a Generalized Photovoltaic System with MPPT Using Perturb and Observer Algorithms under Varying Conditions," Energies, MDPI, vol. 16(9), pages 1-21, April.
    8. Muhammed Y. Worku & Mohamed A. Hassan & Luqman S. Maraaba & Md Shafiullah & Mohamed R. Elkadeem & Md Ismail Hossain & Mohamed A. Abido, 2023. "A Comprehensive Review of Recent Maximum Power Point Tracking Techniques for Photovoltaic Systems under Partial Shading," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    9. Andreea Sabadus & Nicoleta Stefu & Marius Paulescu, 2024. "Evaluating Outdoor Performance of PV Modules Using an Innovative Explicit One-Diode Model," Energies, MDPI, vol. 17(11), pages 1-12, May.
    10. Safdar Mehmood & Yang Xia & Furong Qu & Meng He, 2023. "Investigating the Performance of Efficient and Stable Planer Perovskite Solar Cell with an Effective Inorganic Carrier Transport Layer Using SCAPS-1D Simulation," Energies, MDPI, vol. 16(21), pages 1-14, November.
    11. Mokhtar Jlidi & Oscar Barambones & Faiçal Hamidi & Mohamed Aoun, 2024. "ANN for Temperature and Irradiation Prediction and Maximum Power Point Tracking Using MRP-SMC," Energies, MDPI, vol. 17(12), pages 1-21, June.
    12. Rafael Neto & Yandi Landera & Francisco Neves & Helber de Souza & Marcelo Cavalcanti & Gustavo Azevedo, 2021. "Attenuation of Zero Sequence Voltage Using a Conventional Three-Wire Dynamic Voltage Restorer," Energies, MDPI, vol. 14(5), pages 1-14, February.
    13. Ievgen Verbytskyi & Mykola Lukianov & Kawsar Nassereddine & Bohdan Pakhaliuk & Oleksandr Husev & Ryszard Michał Strzelecki, 2022. "Power Converter Solutions for Industrial PV Applications—A Review," Energies, MDPI, vol. 15(9), pages 1-33, April.
    14. Naveed Ashraf & Ghulam Abbas & Ali Raza & Nasim Ullah & Alsharef Mohammad & Mohamed Emad Farrag, 2022. "A Single-Phase Compact-Sized Matrix Converter with Symmetrical Bipolar Buck and Boost Output Voltage Control," Energies, MDPI, vol. 15(20), pages 1-20, October.
    15. Jian Xue & Jingran Ma & Xingyi Ma & Lei Zhang & Jing Bai, 2024. "Research on Voltage Prediction Using LSTM Neural Networks and Dynamic Voltage Restorers Based on Novel Sliding Mode Variable Structure Control," Energies, MDPI, vol. 17(22), pages 1-17, November.
    16. Marek Pavlík & Matej Bereš & Dobroslav Kováč & Tibor Vince & Irena Kováčová & Ján Molnár, 2023. "Efficiency Optimization in Multi-Branch Converters through Dynamic Control," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
    17. Salvatore Musumeci, 2023. "Energy Conversion Using Electronic Power Converters: Technologies and Applications," Energies, MDPI, vol. 16(8), pages 1-9, April.
    18. Zhenyu Li & Ranchen Yang & Xiao Guo & Ziming Wang & Guozhu Chen, 2022. "A Novel Voltage Sag Detection Method Based on a Selective Harmonic Extraction Algorithm for Nonideal Grid Conditions," Energies, MDPI, vol. 15(15), pages 1-21, July.
    19. M. Usman Khan & Ali Faisal Murtaza & Abdullah M. Noman & Hadeed Ahmed Sher & Maria Zafar, 2023. "State-Space Modeling, Design, and Analysis of the DC-DC Converters for PV Application: A Review," Sustainability, MDPI, vol. 16(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:554-:d:1576548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.