IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5528-d1514448.html
   My bibliography  Save this article

Research on Voltage Prediction Using LSTM Neural Networks and Dynamic Voltage Restorers Based on Novel Sliding Mode Variable Structure Control

Author

Listed:
  • Jian Xue

    (College of Electrical and Information Engineering, Beihua University, Jilin 132021, China)

  • Jingran Ma

    (Beijing Shougang Mining Investment Co., Ltd., Beijing 100041, China)

  • Xingyi Ma

    (College of Electrical and Information Engineering, Beihua University, Jilin 132021, China)

  • Lei Zhang

    (College of Electrical and Information Engineering, Beihua University, Jilin 132021, China)

  • Jing Bai

    (College of Electrical and Information Engineering, Beihua University, Jilin 132021, China)

Abstract

To address the issue of uncertainty in the occurrence time of voltage sags in power grids, which affects power quality, a voltage state prediction method based on LSTM neural networks is proposed for predicting voltage states. For the problem of quickly and accurately compensating for voltage sags, a DVR system based on a new approach law of sliding mode variable structure control is proposed, which significantly reduces chattering, improves response speed, and enhances the robustness of the system. The stability of the system is proven based on Lyapunov stability theory. Simulation experiments are conducted to analyze the voltage state prediction effect based on the LSTM neural network and the compensation effect of the novel reaching law of sliding mode variable structure control under different levels of voltage sag, validating the effectiveness and correctness of the proposed solution.

Suggested Citation

  • Jian Xue & Jingran Ma & Xingyi Ma & Lei Zhang & Jing Bai, 2024. "Research on Voltage Prediction Using LSTM Neural Networks and Dynamic Voltage Restorers Based on Novel Sliding Mode Variable Structure Control," Energies, MDPI, vol. 17(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5528-:d:1514448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5528/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5528/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emiyamrew Minaye Molla & Cheng-Chien Kuo, 2020. "Voltage Quality Enhancement of Grid-Integrated PV System Using Battery-Based Dynamic Voltage Restorer," Energies, MDPI, vol. 13(21), pages 1-16, November.
    2. Ali Moghassemi & Sanjeevikumar Padmanaban, 2020. "Dynamic Voltage Restorer (DVR): A Comprehensive Review of Topologies, Power Converters, Control Methods, and Modified Configurations," Energies, MDPI, vol. 13(16), pages 1-38, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenyu Li & Ranchen Yang & Xiao Guo & Ziming Wang & Guozhu Chen, 2022. "A Novel Voltage Sag Detection Method Based on a Selective Harmonic Extraction Algorithm for Nonideal Grid Conditions," Energies, MDPI, vol. 15(15), pages 1-21, July.
    2. Holman Bueno-Contreras & Germán Andrés Ramos & Ramon Costa-Castelló, 2021. "Power Quality Improvement through a UPQC and a Resonant Observer-Based MIMO Control Strategy," Energies, MDPI, vol. 14(21), pages 1-21, October.
    3. Shen, Boyang & Chen, Yu & Li, Chuanyue & Wang, Sheng & Chen, Xiaoyuan, 2021. "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, Elsevier, vol. 234(C).
    4. Aydogmus, Omur & Boztas, Gullu & Celikel, Resat, 2022. "Design and analysis of a flywheel energy storage system fed by matrix converter as a dynamic voltage restorer," Energy, Elsevier, vol. 238(PB).
    5. Soroush Esmaeili & Kasra Ghobadi & Hassan Zare & Mohsin Jamil & Ashraf Ali Khan & Amin Mahmoudi, 2022. "A Trans-Inverse Magnetic Coupling Single-Phase AC-AC Converter," Energies, MDPI, vol. 15(12), pages 1-25, June.
    6. Rafael Neto & Yandi Landera & Francisco Neves & Helber de Souza & Marcelo Cavalcanti & Gustavo Azevedo, 2021. "Attenuation of Zero Sequence Voltage Using a Conventional Three-Wire Dynamic Voltage Restorer," Energies, MDPI, vol. 14(5), pages 1-14, February.
    7. Ievgen Verbytskyi & Mykola Lukianov & Kawsar Nassereddine & Bohdan Pakhaliuk & Oleksandr Husev & Ryszard Michał Strzelecki, 2022. "Power Converter Solutions for Industrial PV Applications—A Review," Energies, MDPI, vol. 15(9), pages 1-33, April.
    8. Cheng-I Chen & Yeong-Chin Chen & Chung-Hsien Chen & Yung-Ruei Chang, 2020. "Voltage Regulation Using Recurrent Wavelet Fuzzy Neural Network-Based Dynamic Voltage Restorer," Energies, MDPI, vol. 13(23), pages 1-19, November.
    9. Uthra R. & Suchitra D., 2021. "Fault Ride Through in Grid Integrated Hybrid System Using FACTS Device and Electric Vehicle Charging Station," Energies, MDPI, vol. 14(13), pages 1-21, June.
    10. Naveed Ashraf & Ghulam Abbas & Ali Raza & Nasim Ullah & Alsharef Mohammad & Mohamed Emad Farrag, 2022. "A Single-Phase Compact-Sized Matrix Converter with Symmetrical Bipolar Buck and Boost Output Voltage Control," Energies, MDPI, vol. 15(20), pages 1-20, October.
    11. M. Osama abed el-Raouf & Soad A. A. Mageed & M. M. Salama & Mohamed I. Mosaad & H. A. AbdelHadi, 2023. "Performance Enhancement of Grid-Connected Renewable Energy Systems Using UPFC," Energies, MDPI, vol. 16(11), pages 1-22, May.
    12. Salvatore Musumeci, 2023. "Energy Conversion Using Electronic Power Converters: Technologies and Applications," Energies, MDPI, vol. 16(8), pages 1-9, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5528-:d:1514448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.