IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p202-d1307446.html
   My bibliography  Save this article

State-Space Modeling, Design, and Analysis of the DC-DC Converters for PV Application: A Review

Author

Listed:
  • M. Usman Khan

    (Department of Electrical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Ali Faisal Murtaza

    (Faculty of Engineering, University of Central Punjab, Lahore 54000, Pakistan)

  • Abdullah M. Noman

    (Electrical Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia)

  • Hadeed Ahmed Sher

    (Faculty of Electrical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan)

  • Maria Zafar

    (Faculty of Information Technology, University of Central Punjab, Lahore 54000, Pakistan)

Abstract

Small-signal models of dc-dc converters are often designed using a state-space averaging approach. This design can help discuss and derive the control-oriented and other frequency-domain attributes, such as input or output impedance parameters. This paper aims to model the dc-dc converters for PV application by employing a capacitor on the input side. The modeling, design, and analysis of the dc-dc converters regarding the input capacitor is limited in the literature. Five dc-dc converters, including buck, boost, buck-boost, ĆUK, and SEPIC converters, are designed and implemented using the state-space average modeling approach in MATLAB/Simulink. The circuit topology of each converter and the state-space matrices are derived considering every constraint. A rigorous and compelling analysis of the dc-dc converters is carried out to compare system stability and, ultimately, the dynamic performance. The output of the resulting small-signal models has been demonstrated in the time-domain against topology simulations. All the converters are exposed to unpredictable weather conditions and the simulations are carried out in the PSIM software. The perturb and observe (P&O) maximum power point tracking (MPPT) algorithm is applied in all the converters to ensure maximum power point (MPP) achievement. The results showcase that the boost converter outperforms all other converters in terms of stability, settling time, and overshoot.

Suggested Citation

  • M. Usman Khan & Ali Faisal Murtaza & Abdullah M. Noman & Hadeed Ahmed Sher & Maria Zafar, 2023. "State-Space Modeling, Design, and Analysis of the DC-DC Converters for PV Application: A Review," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:202-:d:1307446
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Musong L. Katche & Augustine B. Makokha & Siagi O. Zachary & Muyiwa S. Adaramola, 2023. "A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems," Energies, MDPI, vol. 16(5), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Larbi Chrifi-Alaoui & Saïd Drid & Mohammed Ouriagli & Driss Mehdi, 2023. "Overview of Photovoltaic and Wind Electrical Power Hybrid Systems," Energies, MDPI, vol. 16(12), pages 1-35, June.
    2. Zulfiqar Ali & Syed Zagam Abbas & Anzar Mahmood & Syed Wajahat Ali & Syed Bilal Javed & Chun-Lien Su, 2023. "A Study of a Generalized Photovoltaic System with MPPT Using Perturb and Observer Algorithms under Varying Conditions," Energies, MDPI, vol. 16(9), pages 1-21, April.
    3. Muhammed Y. Worku & Mohamed A. Hassan & Luqman S. Maraaba & Md Shafiullah & Mohamed R. Elkadeem & Md Ismail Hossain & Mohamed A. Abido, 2023. "A Comprehensive Review of Recent Maximum Power Point Tracking Techniques for Photovoltaic Systems under Partial Shading," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    4. Andreea Sabadus & Nicoleta Stefu & Marius Paulescu, 2024. "Evaluating Outdoor Performance of PV Modules Using an Innovative Explicit One-Diode Model," Energies, MDPI, vol. 17(11), pages 1-12, May.
    5. Safdar Mehmood & Yang Xia & Furong Qu & Meng He, 2023. "Investigating the Performance of Efficient and Stable Planer Perovskite Solar Cell with an Effective Inorganic Carrier Transport Layer Using SCAPS-1D Simulation," Energies, MDPI, vol. 16(21), pages 1-14, November.
    6. Mokhtar Jlidi & Oscar Barambones & Faiçal Hamidi & Mohamed Aoun, 2024. "ANN for Temperature and Irradiation Prediction and Maximum Power Point Tracking Using MRP-SMC," Energies, MDPI, vol. 17(12), pages 1-21, June.
    7. Marek Pavlík & Matej Bereš & Dobroslav Kováč & Tibor Vince & Irena Kováčová & Ján Molnár, 2023. "Efficiency Optimization in Multi-Branch Converters through Dynamic Control," Sustainability, MDPI, vol. 15(22), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:202-:d:1307446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.