IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4319-d837657.html
   My bibliography  Save this article

A Trans-Inverse Magnetic Coupling Single-Phase AC-AC Converter

Author

Listed:
  • Soroush Esmaeili

    (Department of Electrical Engineering, Mazandaran University of Science and Technology, Babol 47166-85635, Iran)

  • Kasra Ghobadi

    (Department of Electrical Engineering, Amirkabir University of Technology, Tehran 15916-34311, Iran)

  • Hassan Zare

    (Department of Electrical Engineering, Technical and Vocational University (TVU), Tehran 14357-61137, Iran)

  • Mohsin Jamil

    (Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada)

  • Ashraf Ali Khan

    (Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada)

  • Amin Mahmoudi

    (College of Science and Engineering, Flinders University, Adelaide 5042, Australia)

Abstract

This paper introduces a new single-phase AC-AC converter based on an impedance source circuit. Like the existing single-phase impedance source AC-AC converters, it has the buck-boost ability and direct ac conversion. The input and output voltage possesses the same ground, and the phase angle is maintained and reversed smoothly. The presented converter utilizes a coupled transformer which allows the designer to exploit the transformer’s turns ratio as a variable to attain the desired output voltage. Additionally, the used transformer provides an option to obtain higher voltage gain by decreasing the turns ratio. Hence, smaller size of the coupled inductors is required for the higher voltage cases. To eliminate the switching voltage and current spikes on the power switches, a safe commutation strategy is used instead of utilizing snubber circuits. Furthermore, the input current is continuous and sinusoidal with low harmonics thanks to embedding the input inductor in series with the input source. Additionally, a dynamic voltage restorer is presented based on the proposed converter to compensate the voltage sag and swell faults. Simulation results are provided to evaluate the theoretical analysis. Finally, a laboratory prototype has been fabricated to demonstrate the validation of the presented converter.

Suggested Citation

  • Soroush Esmaeili & Kasra Ghobadi & Hassan Zare & Mohsin Jamil & Ashraf Ali Khan & Amin Mahmoudi, 2022. "A Trans-Inverse Magnetic Coupling Single-Phase AC-AC Converter," Energies, MDPI, vol. 15(12), pages 1-25, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4319-:d:837657
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4319/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4319/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naveed Ashraf & Ghulam Abbas & Nasim Ullah & Ahmad Aziz Al-Ahmadi & Abdul Rehman Yasin & Ahmed Bilal Awan & Mohsin Jamil, 2022. "A Transformerless AC-AC Converter with Improved Power Quality Employed to Step-Down Power Frequency at Output," Energies, MDPI, vol. 15(2), pages 1-20, January.
    2. Ali Moghassemi & Sanjeevikumar Padmanaban, 2020. "Dynamic Voltage Restorer (DVR): A Comprehensive Review of Topologies, Power Converters, Control Methods, and Modified Configurations," Energies, MDPI, vol. 13(16), pages 1-38, August.
    3. Aryorad Khodaparast & Erfan Azimi & Ali Azimi & M. Ebrahim Adabi & Jafar Adabi & Edris Pouresmaeil, 2019. "A New Modular Multilevel Inverter Based on Step-Up Switched-Capacitor Modules," Energies, MDPI, vol. 12(3), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holman Bueno-Contreras & Germán Andrés Ramos & Ramon Costa-Castelló, 2021. "Power Quality Improvement through a UPQC and a Resonant Observer-Based MIMO Control Strategy," Energies, MDPI, vol. 14(21), pages 1-21, October.
    2. Aydogmus, Omur & Boztas, Gullu & Celikel, Resat, 2022. "Design and analysis of a flywheel energy storage system fed by matrix converter as a dynamic voltage restorer," Energy, Elsevier, vol. 238(PB).
    3. Mauricio Muñoz-Ramírez & Hugo Valderrama-Blavi & Marco Rivera & Carlos Restrepo, 2019. "An Approach to Natural Sampling Using a Digital Sampling Technique for SPWM Multilevel Inverter Modulation," Energies, MDPI, vol. 12(15), pages 1-16, July.
    4. Rafael Neto & Yandi Landera & Francisco Neves & Helber de Souza & Marcelo Cavalcanti & Gustavo Azevedo, 2021. "Attenuation of Zero Sequence Voltage Using a Conventional Three-Wire Dynamic Voltage Restorer," Energies, MDPI, vol. 14(5), pages 1-14, February.
    5. Ievgen Verbytskyi & Mykola Lukianov & Kawsar Nassereddine & Bohdan Pakhaliuk & Oleksandr Husev & Ryszard Michał Strzelecki, 2022. "Power Converter Solutions for Industrial PV Applications—A Review," Energies, MDPI, vol. 15(9), pages 1-33, April.
    6. Xiaolin Wang & Ka Wai Eric Cheng & Yat Chi Fong, 2019. "Zero Current Switching Switched-Capacitors Balancing Circuit for Energy Storage Cell Equalization and Its Associated Hybrid Circuit with Classical Buck-Boost," Energies, MDPI, vol. 12(14), pages 1-15, July.
    7. Cuidong Xu & Ka Wai Eric Cheng, 2022. "Topology and Formation of Current Source Step Down Resonant Switched Inductor Converters," Energies, MDPI, vol. 15(5), pages 1-20, February.
    8. Naveed Ashraf & Ghulam Abbas & Ali Raza & Nasim Ullah & Alsharef Mohammad & Mohamed Emad Farrag, 2022. "A Single-Phase Compact-Sized Matrix Converter with Symmetrical Bipolar Buck and Boost Output Voltage Control," Energies, MDPI, vol. 15(20), pages 1-20, October.
    9. Muhammad Yasir Ali Khan & Haoming Liu & Zhihao Yang & Xiaoling Yuan, 2020. "A Comprehensive Review on Grid Connected Photovoltaic Inverters, Their Modulation Techniques, and Control Strategies," Energies, MDPI, vol. 13(16), pages 1-40, August.
    10. Salvatore Musumeci, 2023. "Energy Conversion Using Electronic Power Converters: Technologies and Applications," Energies, MDPI, vol. 16(8), pages 1-9, April.
    11. Zhenyu Li & Ranchen Yang & Xiao Guo & Ziming Wang & Guozhu Chen, 2022. "A Novel Voltage Sag Detection Method Based on a Selective Harmonic Extraction Algorithm for Nonideal Grid Conditions," Energies, MDPI, vol. 15(15), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4319-:d:837657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.