IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3638-d1131031.html
   My bibliography  Save this article

A Study of a Generalized Photovoltaic System with MPPT Using Perturb and Observer Algorithms under Varying Conditions

Author

Listed:
  • Zulfiqar Ali

    (Department of Electrical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 807618, Taiwan
    These authors contributed equally to this work.)

  • Syed Zagam Abbas

    (Department of Electrical Engineering, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
    These authors contributed equally to this work.)

  • Anzar Mahmood

    (Department of Electrical Engineering, Mirpur University of Science and Technology, Mirpur 10250, Pakistan)

  • Syed Wajahat Ali

    (Department of Electrical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 807618, Taiwan)

  • Syed Bilal Javed

    (Department Electrical Engineering, COMSATS University, Islamabad 45550, Pakistan)

  • Chun-Lien Su

    (Department of Electrical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 807618, Taiwan)

Abstract

In recent years, renewable energy (RE) has shown promise as a sustainable solution to the rising energy demand worldwide. Photovoltaic (PV) technology has emerged as a highly viable RE alternative. The majority of PV schemes use specific PV models with specified parameters. This study proposes a PV model with generic specifications, a PV array, a DC/DC converter, a DC/AC inverter, maximum power point tracking (MPPT), and grid synchronization using a feedback control system under the MATLAB/Simulink environment. Various MPPT techniques have been adapted to track the PV’s maximum power point (MPP); however, there are various uncertainties. To address these challenges, this paper presented a perturb and observe (P&O) strategy to track the MPP of PV systems reliably. The MPP of a PV system varies according to meteorological order, such as solar radiation and cell temperature. The MPPT primarily gathers the maximum current and voltage of the PV array and provides them to the load using a boost converter. The MPPT performance and PV array attributes are analyzed during abrupt weather changes. Finally, a feedback controller is configured to perform synchronization of the inverter with the grid. The validity and reliability of the PV module using P&O methods provide a higher efficacy of MPPT under MATLAB/simulation. Finally, the presented results endorse the strength of the proposed technique.

Suggested Citation

  • Zulfiqar Ali & Syed Zagam Abbas & Anzar Mahmood & Syed Wajahat Ali & Syed Bilal Javed & Chun-Lien Su, 2023. "A Study of a Generalized Photovoltaic System with MPPT Using Perturb and Observer Algorithms under Varying Conditions," Energies, MDPI, vol. 16(9), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3638-:d:1131031
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3638/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3638/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maen Takruri & Maissa Farhat & Oscar Barambones & José Antonio Ramos-Hernanz & Mohammed Jawdat Turkieh & Mohammed Badawi & Hanin AlZoubi & Maswood Abdus Sakur, 2020. "Maximum Power Point Tracking of PV System Based on Machine Learning," Energies, MDPI, vol. 13(3), pages 1-14, February.
    2. Wafa Hayder & Emanuele Ogliari & Alberto Dolara & Aycha Abid & Mouna Ben Hamed & Lasaad Sbita, 2020. "Improved PSO: A Comparative Study in MPPT Algorithm for PV System Control under Partial Shading Conditions," Energies, MDPI, vol. 13(8), pages 1-22, April.
    3. Syed Zagam Abbas & Zulfiqar Ali & Anzar Mahmood & Syed Quosain Haider & Anila Kousar & Sohail Razzaq & Tehzeeb Ul Hassan & Chun-Lien Su, 2022. "Review of Smart Grid and Nascent Energy Policies: Pakistan as a Case Study," Energies, MDPI, vol. 15(19), pages 1-23, September.
    4. Das, Narottam & Wongsodihardjo, Hendy & Islam, Syed, 2015. "Modeling of multi-junction photovoltaic cell using MATLAB/Simulink to improve the conversion efficiency," Renewable Energy, Elsevier, vol. 74(C), pages 917-924.
    5. Carlos Robles Algarín & John Taborda Giraldo & Omar Rodríguez Álvarez, 2017. "Fuzzy Logic Based MPPT Controller for a PV System," Energies, MDPI, vol. 10(12), pages 1-18, December.
    6. Eldin, S.A. Sharaf & Abd-Elhady, M.S. & Kandil, H.A., 2016. "Feasibility of solar tracking systems for PV panels in hot and cold regions," Renewable Energy, Elsevier, vol. 85(C), pages 228-233.
    7. Musong L. Katche & Augustine B. Makokha & Siagi O. Zachary & Muyiwa S. Adaramola, 2023. "A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems," Energies, MDPI, vol. 16(5), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Deng & Jingang Han, 2024. "Energy Management of Green Port Multi-Energy Microgrid Based on Fuzzy Logic Control," Energies, MDPI, vol. 17(14), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    2. Amit Kumar Sharma & Rupendra Kumar Pachauri & Sushabhan Choudhury & Ahmad Faiz Minai & Majed A. Alotaibi & Hasmat Malik & Fausto Pedro García Márquez, 2023. "Role of Metaheuristic Approaches for Implementation of Integrated MPPT-PV Systems: A Comprehensive Study," Mathematics, MDPI, vol. 11(2), pages 1-48, January.
    3. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    4. Long-Yi Chang & Yi-Nung Chung & Kuei-Hsiang Chao & Jia-Jing Kao, 2018. "Smart Global Maximum Power Point Tracking Controller of Photovoltaic Module Arrays," Energies, MDPI, vol. 11(3), pages 1-16, March.
    5. Milad Zeraatpisheh & Reza Arababadi & Mohsen Saffari Pour, 2018. "Economic Analysis for Residential Solar PV Systems Based on Different Demand Charge Tariffs," Energies, MDPI, vol. 11(12), pages 1-19, November.
    6. Andrés Tobón & Julián Peláez-Restrepo & Juan P. Villegas-Ceballos & Sergio Ignacio Serna-Garcés & Jorge Herrera & Asier Ibeas, 2017. "Maximum Power Point Tracking of Photovoltaic Panels by Using Improved Pattern Search Methods," Energies, MDPI, vol. 10(9), pages 1-15, September.
    7. Diego R. Espinoza Trejo & Ernesto Bárcenas & José E. Hernández Díez & Guillermo Bossio & Gerardo Espinosa Pérez, 2018. "Open- and Short-Circuit Fault Identification for a Boost dc/dc Converter in PV MPPT Systems," Energies, MDPI, vol. 11(3), pages 1-15, March.
    8. Muñoz-Cerón, E. & Lomas, J.C. & Aguilera, J. & de la Casa, J., 2018. "Influence of Operation and Maintenance expenditures in the feasibility of photovoltaic projects: The case of a tracking pv plant in Spain," Energy Policy, Elsevier, vol. 121(C), pages 506-518.
    9. Alessandro Niccolai & Alberto Dolara & Emanuele Ogliari, 2021. "Hybrid PV Power Forecasting Methods: A Comparison of Different Approaches," Energies, MDPI, vol. 14(2), pages 1-18, January.
    10. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    11. Triet Nguyen-Van & Rikiya Abe & Kenji Tanaka, 2018. "MPPT and SPPT Control for PV-Connected Inverters Using Digital Adaptive Hysteresis Current Control," Energies, MDPI, vol. 11(8), pages 1-16, August.
    12. Abdelbasset Krama & Laid Zellouma & Boualaga Rabhi & Shady S. Refaat & Mansour Bouzidi, 2018. "Real-Time Implementation of High Performance Control Scheme for Grid-Tied PV System for Power Quality Enhancement Based on MPPC-SVM Optimized by PSO Algorithm," Energies, MDPI, vol. 11(12), pages 1-26, December.
    13. Kostas Bavarinos & Anastasios Dounis & Panagiotis Kofinas, 2021. "Maximum Power Point Tracking Based on Reinforcement Learning Using Evolutionary Optimization Algorithms," Energies, MDPI, vol. 14(2), pages 1-23, January.
    14. Ahmad, Lujean & Khordehgah, Navid & Malinauskaite, Jurgita & Jouhara, Hussam, 2020. "Recent advances and applications of solar photovoltaics and thermal technologies," Energy, Elsevier, vol. 207(C).
    15. Dan Craciunescu & Laurentiu Fara, 2023. "Investigation of the Partial Shading Effect of Photovoltaic Panels and Optimization of Their Performance Based on High-Efficiency FLC Algorithm," Energies, MDPI, vol. 16(3), pages 1-28, January.
    16. Mirzaei, Mohsen & Mohiabadi, Mostafa Zamani, 2018. "Comparative analysis of energy yield of different tracking modes of PV systems in semiarid climate conditions: The case of Iran," Renewable Energy, Elsevier, vol. 119(C), pages 400-409.
    17. Julio López Seguel & Seleme I. Seleme & Lenin M. F. Morais, 2022. "Comparative Study of Buck-Boost, SEPIC, Cuk and Zeta DC-DC Converters Using Different MPPT Methods for Photovoltaic Applications," Energies, MDPI, vol. 15(21), pages 1-26, October.
    18. Larbi Chrifi-Alaoui & Saïd Drid & Mohammed Ouriagli & Driss Mehdi, 2023. "Overview of Photovoltaic and Wind Electrical Power Hybrid Systems," Energies, MDPI, vol. 16(12), pages 1-35, June.
    19. Petru Adrian Cotfas & Daniel Tudor Cotfas & Paul Nicolae Borza & Dezso Sera & Remus Teodorescu, 2018. "Solar Cell Capacitance Determination Based on an RLC Resonant Circuit," Energies, MDPI, vol. 11(3), pages 1-13, March.
    20. Jong-Chan Kim & Jun-Ho Huh & Jae-Sub Ko, 2020. "Optimization Design and Test Bed of Fuzzy Control Rule Base for PV System MPPT in Micro Grid," Sustainability, MDPI, vol. 12(9), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3638-:d:1131031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.