IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p226-d1561493.html
   My bibliography  Save this article

Quantitative Analysis of Energy Storage Demand in Northeast China Using Gaussian Mixture Clustering Model

Author

Listed:
  • Yiwen Yao

    (Power Economic Research Institute of Jilin Electric Power Co., Ltd., Changchun 130021, China)

  • Yu Shi

    (Power Economic Research Institute of Jilin Electric Power Co., Ltd., Changchun 130021, China)

  • Jing Wang

    (Power Economic Research Institute of Jilin Electric Power Co., Ltd., Changchun 130021, China)

  • Zifang Zhang

    (Deepwater Engineering Research Center, Dalian University of Technology, Dalian 116024, China)

  • Xin Xu

    (Power Economic Research Institute of Jilin Electric Power Co., Ltd., Changchun 130021, China)

  • Xinhong Wang

    (Power Economic Research Institute of Jilin Electric Power Co., Ltd., Changchun 130021, China)

  • Dingheng Wang

    (Power Economic Research Institute of Jilin Electric Power Co., Ltd., Changchun 130021, China)

  • Zilai Ou

    (Deepwater Engineering Research Center, Dalian University of Technology, Dalian 116024, China)

  • Zhe Ma

    (Deepwater Engineering Research Center, Dalian University of Technology, Dalian 116024, China)

Abstract

The increased share of new energy sources in Northeast China’s power mix has strained grid stability. Energy storage technologies are essential for maintaining grid stability by addressing peak shaving and frequency regulation challenges. However, a clear quantitative assessment of the region’s energy storage needs is lacking, leading to weak grid stability and limited growth potential. This paper analyzes power supply data from Northeast China and models the stochastic characteristics of new energy generation. A joint optimization model for energy storage and thermal power is developed to optimize power allocation for peak shaving and frequency regulation at minimal cost. The empirical distribution method quantifies the relationship between storage power, capacity, and confidence levels, providing insights into the region’s future energy storage demands. The study finds that under 10 typical scenarios, the demand for peaking power at a 15 min scale is ≤500 MW, and the demand for frequency regulation at a 1 min scale is ≤1000 MW. At the 90% confidence level, the required capacity for new energy storage for peak shaving and frequency regulation is 424.13 MWh and 197.65 MWh, respectively. The required power for peak shaving and frequency regulation is 247.88 MW and 527.33 MW, respectively. The durations of peak shaving and frequency regulation are 1.71 h and 0.38 h. It also forecasts the energy storage capacity in the northeast region from 2025 to 2030 under the 5% annual incremental new energy penetration scenario. These findings provide theoretical support for energy storage policies in Northeast China during the 14th Five-Year Plan and practical guidance for accelerating energy storage industrialization.

Suggested Citation

  • Yiwen Yao & Yu Shi & Jing Wang & Zifang Zhang & Xin Xu & Xinhong Wang & Dingheng Wang & Zilai Ou & Zhe Ma, 2025. "Quantitative Analysis of Energy Storage Demand in Northeast China Using Gaussian Mixture Clustering Model," Energies, MDPI, vol. 18(2), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:226-:d:1561493
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/226/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/226/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McPherson, Madeleine & Johnson, Nils & Strubegger, Manfred, 2018. "The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions," Applied Energy, Elsevier, vol. 216(C), pages 649-661.
    2. Junxiao Zhang & Chengmin Wang & Jing Zuo & Chong Gao & Shurong Zheng & Ran Cheng & Yao Duan & Yawu Wang, 2024. "Multi-Stage Rolling Grid Expansion Planning for Distribution Networks Considering Conditional Value at Risk," Energies, MDPI, vol. 17(20), pages 1-20, October.
    3. Fang, Guochang & Meng, Aoxiang & Wang, Qingling & Zhou, Huixin & Tian, Lixin, 2024. "Analysis of the evolution path of new energy system under polymorphic uncertainty—A case study of China," Energy, Elsevier, vol. 300(C).
    4. Soroudi, Alireza & Amraee, Turaj, 2013. "Decision making under uncertainty in energy systems: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 376-384.
    5. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2014. "The role of large-scale energy storage design and dispatch in the power grid: A study of very high grid penetration of variable renewable resources," Applied Energy, Elsevier, vol. 134(C), pages 75-89.
    6. Zhang, Jinhua & Yan, Jie & Infield, David & Liu, Yongqian & Lien, Fue-sang, 2019. "Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model," Applied Energy, Elsevier, vol. 241(C), pages 229-244.
    7. Braeuer, Fritz & Rominger, Julian & McKenna, Russell & Fichtner, Wolf, 2019. "Battery storage systems: An economic model-based analysis of parallel revenue streams and general implications for industry," Applied Energy, Elsevier, vol. 239(C), pages 1424-1440.
    8. Li, Junhui & Yu, Zhenbo & Mu, Gang & Li, Baoju & Zhou, Jiaxu & Yan, Gangui & Zhu, Xingxu & Li, Cuiping, 2024. "An assessment methodology for the flexibility capacity of new power system based on two-stage robust optimization," Applied Energy, Elsevier, vol. 376(PB).
    9. Guo, Li & Hou, Ruosong & Liu, Yixin & Wang, Chengshan & Lu, Hai, 2020. "A novel typical day selection method for the robust planning of stand-alone wind-photovoltaic-diesel-battery microgrid," Applied Energy, Elsevier, vol. 263(C).
    10. Niu, Jide & Tian, Zhe & Yue, Lu, 2020. "Robust optimal design of building cooling sources considering the uncertainty and cross-correlation of demand and source," Applied Energy, Elsevier, vol. 265(C).
    11. Park, Alex & Lappas, Petros, 2017. "Evaluating demand charge reduction for commercial-scale solar PV coupled with battery storage," Renewable Energy, Elsevier, vol. 108(C), pages 523-532.
    12. Wang, Sen & Li, Fengting & Zhang, Gaohang & Yin, Chunya, 2023. "Analysis of energy storage demand for peak shaving and frequency regulation of power systems with high penetration of renewable energy," Energy, Elsevier, vol. 267(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Sen & Li, Fengting & Zhang, Gaohang & Yin, Chunya, 2023. "Analysis of energy storage demand for peak shaving and frequency regulation of power systems with high penetration of renewable energy," Energy, Elsevier, vol. 267(C).
    2. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2023. "A framework for quantifying the value of information to mitigate risk in the optimal design of distributed energy systems under uncertainty," Applied Energy, Elsevier, vol. 350(C).
    3. Henni, Sarah & Becker, Jonas & Staudt, Philipp & vom Scheidt, Frederik & Weinhardt, Christof, 2022. "Industrial peak shaving with battery storage using a probabilistic forecasting approach: Economic evaluation of risk attitude," Applied Energy, Elsevier, vol. 327(C).
    4. Solomon, A.A. & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Curtailment-storage-penetration nexus in the energy transition," Applied Energy, Elsevier, vol. 235(C), pages 1351-1368.
    5. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    6. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    7. Liu, Benxi & Liu, Tengyuan & Liao, Shengli & Lu, Jia & Cheng, Chuntian, 2023. "Short-term coordinated hybrid hydro-wind-solar optimal scheduling model considering multistage section restrictions," Renewable Energy, Elsevier, vol. 217(C).
    8. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    9. De Vivero-Serrano, Gustavo & Bruninx, Kenneth & Delarue, Erik, 2019. "Implications of bid structures on the offering strategies of merchant energy storage systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Dou, Weijing & Wang, Kai & Shan, Shuo & Li, Chenxi & Wang, Yiye & Zhang, Kanjian & Wei, Haikun & Sreeram, Victor, 2024. "Day-ahead Numerical Weather Prediction solar irradiance correction using a clustering method based on weather conditions," Applied Energy, Elsevier, vol. 365(C).
    11. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    12. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    13. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    14. Xiaotong Shuai & Roger Raufer, 2021. "Behind‐the‐meter energy storage in China: Lessons from California's approach," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    15. Portilla-Paveri, Manuel & Cariaga, Denise & Negrete-Pincetic, Matías & Lorca, Álvaro & Anjos, Miguel F., 2024. "A long-term generation and transmission expansion planning model considering desalination flexibility and coordination: A Chilean case study," Applied Energy, Elsevier, vol. 371(C).
    16. Marcin Rabe & Dalia Streimikiene & Yuriy Bilan, 2019. "The Concept of Risk and Possibilities of Application of Mathematical Methods in Supporting Decision Making for Sustainable Energy Development," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    17. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    18. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    20. Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:226-:d:1561493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.