IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v239y2019icp1424-1440.html
   My bibliography  Save this article

Battery storage systems: An economic model-based analysis of parallel revenue streams and general implications for industry

Author

Listed:
  • Braeuer, Fritz
  • Rominger, Julian
  • McKenna, Russell
  • Fichtner, Wolf

Abstract

This paper evaluates the economic potential of energy flexibility in 50 different German small and medium sized enterprises (SMEs) through the installation of a battery storage system (BSS). The central innovation lies in the possibility of pursuing multiple revenue streams simultaneously: peak shaving, provision of primary control reserve (PCR) and energy-arbitrage-trading through intraday and day-ahead markets. The energy system of an industrial manufacturing plant is modelled as a linear program (LP) with a 15-min resolution. The model offers the option to invest in BSSs with different capacities, with the objective of minimizing the overall cost and identifying the optimal size of the BSS. The results show that none of these three revenue streams individually is economically attractive, but when combined, all three together can achieve profitability for some companies, whereby the majority of the cash flow comes from peak shaving and PCR. With a fixed BSS capacity of 500 kWh, the Net Present Value (NPV) varies from a minimum of −350,000 € for just arbitrage up to about 200,000 € for all three use cases in parallel. In the case of a variable BSS capacity, the capacity varies up to 1200 kWh and the Profitability Index (the ratio of investment to NPV) varies from 0.06 to 0.31. Under current German market conditions, arbitrage trading contributes only marginally to the profitability, as the price spreads are too small to justify stronger battery degradation. The paper also identifies various load indicators from the analysis of the demand profile that support the evaluation of a BSS in industry. A stepwise linear regression reveals a moderate dependency of the BSS profitability on two newly developed load indicators. Future work should focus on a more detailed depiction of the battery’s technical behaviour and increasing the sample size to improve the statistical significance of the results.

Suggested Citation

  • Braeuer, Fritz & Rominger, Julian & McKenna, Russell & Fichtner, Wolf, 2019. "Battery storage systems: An economic model-based analysis of parallel revenue streams and general implications for industry," Applied Energy, Elsevier, vol. 239(C), pages 1424-1440.
  • Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:1424-1440
    DOI: 10.1016/j.apenergy.2019.01.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919300479
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malhotra, Abhishek & Battke, Benedikt & Beuse, Martin & Stephan, Annegret & Schmidt, Tobias, 2016. "Use cases for stationary battery technologies: A review of the literature and existing projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 705-721.
    2. Lombardi, P. & Schwabe, F., 2017. "Sharing economy as a new business model for energy storage systems," Applied Energy, Elsevier, vol. 188(C), pages 485-496.
    3. Martínez Ceseña, Eduardo A. & Good, Nicholas & Mancarella, Pierluigi, 2015. "Electrical network capacity support from demand side response: Techno-economic assessment of potential business cases for small commercial and residential end-users," Energy Policy, Elsevier, vol. 82(C), pages 222-232.
    4. Atabay, Dennis, 2017. "An open-source model for optimal design and operation of industrial energy systems," Energy, Elsevier, vol. 121(C), pages 803-821.
    5. Telaretti, E. & Graditi, G. & Ippolito, M.G. & Zizzo, G., 2016. "Economic feasibility of stationary electrochemical storages for electric bill management applications: The Italian scenario," Energy Policy, Elsevier, vol. 94(C), pages 126-137.
    6. Dowling, Alexander W. & Kumar, Ranjeet & Zavala, Victor M., 2017. "A multi-scale optimization framework for electricity market participation," Applied Energy, Elsevier, vol. 190(C), pages 147-164.
    7. Rodríguez-García, Javier & Álvarez-Bel, Carlos & Carbonell-Carretero, José-Francisco & Alcázar-Ortega, Manuel & Peñalvo-López, Elisa, 2016. "A novel tool for the evaluation and assessment of demand response activities in the industrial sector," Energy, Elsevier, vol. 113(C), pages 1136-1146.
    8. McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2013. "Evaluation of time series techniques to characterise domestic electricity demand," Energy, Elsevier, vol. 50(C), pages 120-130.
    9. Heymans, Catherine & Walker, Sean B. & Young, Steven B. & Fowler, Michael, 2014. "Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling," Energy Policy, Elsevier, vol. 71(C), pages 22-30.
    10. Shcherbakova, Anastasia & Kleit, Andrew & Cho, Joohyun, 2014. "The value of energy storage in South Korea’s electricity market: A Hotelling approach," Applied Energy, Elsevier, vol. 125(C), pages 93-102.
    11. Opitz, A. & Badami, P. & Shen, L. & Vignarooban, K. & Kannan, A.M., 2017. "Can Li-Ion batteries be the panacea for automotive applications?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 685-692.
    12. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    13. Park, Alex & Lappas, Petros, 2017. "Evaluating demand charge reduction for commercial-scale solar PV coupled with battery storage," Renewable Energy, Elsevier, vol. 108(C), pages 523-532.
    14. Daniel R. Jiang & Warren B. Powell, 2015. "Optimal Hour-Ahead Bidding in the Real-Time Electricity Market with Battery Storage Using Approximate Dynamic Programming," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 525-543, August.
    15. Faessler, B. & Kepplinger, P. & Petrasch, J., 2017. "Decentralized price-driven grid balancing via repurposed electric vehicle batteries," Energy, Elsevier, vol. 118(C), pages 446-455.
    16. Lunz, Benedikt & Yan, Zexiong & Gerschler, Jochen Bernhard & Sauer, Dirk Uwe, 2012. "Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs," Energy Policy, Elsevier, vol. 46(C), pages 511-519.
    17. Lin, Boqiang & Wu, Wei, 2017. "Economic viability of battery energy storage and grid strategy: A special case of China electricity market," Energy, Elsevier, vol. 124(C), pages 423-434.
    18. Graditi, G. & Ippolito, M.G. & Telaretti, E. & Zizzo, G., 2016. "Technical and economical assessment of distributed electrochemical storages for load shifting applications: An Italian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 515-523.
    19. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2014. "Agent-based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response," Applied Energy, Elsevier, vol. 126(C), pages 297-306.
    20. Cho, Joohyun & Kleit, Andrew N., 2015. "Energy storage systems in energy and ancillary markets: A backwards induction approach," Applied Energy, Elsevier, vol. 147(C), pages 176-183.
    21. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2015. "Smart households: Dispatch strategies and economic analysis of distributed energy storage for residential peak shaving," Applied Energy, Elsevier, vol. 147(C), pages 246-257.
    22. Kaschub, Thomas & Jochem, Patrick & Fichtner, Wolf, 2016. "Solar energy storage in German households: profitability, load changes and flexibility," Energy Policy, Elsevier, vol. 98(C), pages 520-532.
    23. Moreno, Rodrigo & Moreira, Roberto & Strbac, Goran, 2015. "A MILP model for optimising multi-service portfolios of distributed energy storage," Applied Energy, Elsevier, vol. 137(C), pages 554-566.
    24. Nottrott, A. & Kleissl, J. & Washom, B., 2013. "Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems," Renewable Energy, Elsevier, vol. 55(C), pages 230-240.
    25. Gitizadeh, Mohsen & Fakharzadegan, Hamid, 2014. "Battery capacity determination with respect to optimized energy dispatch schedule in grid-connected photovoltaic (PV) systems," Energy, Elsevier, vol. 65(C), pages 665-674.
    26. Bradbury, Kyle & Pratson, Lincoln & Patiño-Echeverri, Dalia, 2014. "Economic viability of energy storage systems based on price arbitrage potential in real-time U.S. electricity markets," Applied Energy, Elsevier, vol. 114(C), pages 512-519.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Srinivasan, Arvind & Wu, Raphael & Heer, Philipp & Sansavini, Giovanni, 2023. "Impact of forecast uncertainty and electricity markets on the flexibility provision and economic performance of highly-decarbonized multi-energy systems," Applied Energy, Elsevier, vol. 338(C).
    2. Beuse, Martin & Dirksmeier, Mathias & Steffen, Bjarne & Schmidt, Tobias S., 2020. "Profitability of commercial and industrial photovoltaics and battery projects in South-East-Asia," Applied Energy, Elsevier, vol. 271(C).
    3. Niko Karhula & Seppo Sierla & Valeriy Vyatkin, 2021. "Validating the Real-Time Performance of Distributed Energy Resources Participating on Primary Frequency Reserves," Energies, MDPI, vol. 14(21), pages 1-19, October.
    4. Kai Xu & Youguang Guo & Gang Lei & Jianguo Zhu, 2023. "A Review of Flywheel Energy Storage System Technologies," Energies, MDPI, vol. 16(18), pages 1-32, September.
    5. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    6. Henni, Sarah & Becker, Jonas & Staudt, Philipp & vom Scheidt, Frederik & Weinhardt, Christof, 2022. "Industrial peak shaving with battery storage using a probabilistic forecasting approach: Economic evaluation of risk attitude," Applied Energy, Elsevier, vol. 327(C).
    7. Angelo Maiorino & Adrián Mota-Babiloni & Manuel Gesù Del Duca & Ciro Aprea, 2021. "Scheduling Optimization of a Cabinet Refrigerator Incorporating a Phase Change Material to Reduce Its Indirect Environmental Impact," Energies, MDPI, vol. 14(8), pages 1-17, April.
    8. Hameed, Zeenat & Hashemi, Seyedmostafa & Ipsen, Hans Henrik & Træholt, Chresten, 2021. "A business-oriented approach for battery energy storage placement in power systems," Applied Energy, Elsevier, vol. 298(C).
    9. Weinand, Jann & Ried, Sabrina & Kleinebrahm, Max & McKenna, Russell & Fichtner, Wolf, 2020. "Identification of potential off-grid municipalities with 100% renewable energy supply," Working Paper Series in Production and Energy 40, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    10. Davor Zoričić & Goran Knežević & Marija Miletić & Denis Dolinar & Danijela Miloš Sprčić, 2022. "Integrated Risk Analysis of Aggregators: Policy Implications for the Development of the Competitive Aggregator Industry," Energies, MDPI, vol. 15(14), pages 1-22, July.
    11. Xiaotong Shuai & Roger Raufer, 2021. "Behind‐the‐meter energy storage in China: Lessons from California's approach," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    12. Englberger, Stefan & Abo Gamra, Kareem & Tepe, Benedikt & Schreiber, Michael & Jossen, Andreas & Hesse, Holger, 2021. "Electric vehicle multi-use: Optimizing multiple value streams using mobile storage systems in a vehicle-to-grid context," Applied Energy, Elsevier, vol. 304(C).
    13. Silvestri, Luca & De Santis, Michele, 2024. "Renewable-based load shifting system for demand response to enhance energy-economic-environmental performance of industrial enterprises," Applied Energy, Elsevier, vol. 358(C).
    14. Draheim, Patrick & Schlachter, Uli & Wigger, Henning & Worschech, Alena & Brand, Urte & Diekmann, Theys & Schuldt, Frank & Hanke, Benedikt & von Maydell, Karsten & Vogt, Thomas, 2020. "Business case analysis of hybrid systems consisting of battery storage and power-to-heat on the German energy market," Utilities Policy, Elsevier, vol. 67(C).
    15. Muhammad Awais & Laiq Khan & Said Ghani Khan & Qasim Awais & Mohsin Jamil, 2023. "Adaptive Neural Network Q-Learning-Based Full Recurrent Adaptive NeuroFuzzy Nonlinear Control Paradigms for Bidirectional-Interlinking Converter in a Grid-Connected Hybrid AC-DC Microgrid," Energies, MDPI, vol. 16(4), pages 1-40, February.
    16. Patrick Vollmuth & Maximilian Hampel, 2023. "Synergies of Electric Vehicle Multi-Use: Analyzing the Implementation Effort for Use Case Combinations in Smart E-Mobility," Energies, MDPI, vol. 16(5), pages 1-35, March.
    17. Lynch, Muireann & Longoria, Genaro & Curtis, John, 2021. "Market design options for electricity markets with high variable renewable generation," Utilities Policy, Elsevier, vol. 73(C).
    18. Braeuer, Fritz & Finck, Rafael & McKenna, Russell, 2020. "Comparing empirical and model-based approaches for calculating dynamic grid emission factors: An application to CO2-minimizing storage dispatch in Germany," Working Paper Series in Production and Energy 44, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    19. Fett, Daniel & Fraunholz, Christoph & Lange, Malin, 2023. "Provision of frequency containment reserve from residential battery storage systems: A German case study," Working Paper Series in Production and Energy 71, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    20. Icaza-Alvarez, Daniel & Jurado, Francisco & Tostado-Véliz, Marcos & Arevalo, Paúl, 2022. "Decarbonization of the Galapagos Islands. Proposal to transform the energy system into 100% renewable by 2050," Renewable Energy, Elsevier, vol. 189(C), pages 199-220.
    21. Killer, Marvin & Farrokhseresht, Mana & Paterakis, Nikolaos G., 2020. "Implementation of large-scale Li-ion battery energy storage systems within the EMEA region," Applied Energy, Elsevier, vol. 260(C).
    22. Fabian Scheller & Robert Burkhardt & Robert Schwarzeit & Russell McKenna & Thomas Bruckner, 2020. "Competition between simultaneous demand-side flexibility options: The case of community electricity storage systems," Papers 2011.05809, arXiv.org.
    23. Scheller, Fabian & Burkhardt, Robert & Schwarzeit, Robert & McKenna, Russell & Bruckner, Thomas, 2020. "Competition between simultaneous demand-side flexibility options: the case of community electricity storage systems," Applied Energy, Elsevier, vol. 269(C).
    24. Vykhodtsev, Anton V. & Jang, Darren & Wang, Qianpu & Rosehart, William & Zareipour, Hamidreza, 2022. "A review of modelling approaches to characterize lithium-ion battery energy storage systems in techno-economic analyses of power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    25. Jura Jurčević & Ivan Pavić & Nikolina Čović & Denis Dolinar & Davor Zoričić, 2022. "Estimation of Internal Rate of Return for Battery Storage Systems with Parallel Revenue Streams: Cycle-Cost vs. Multi-Objective Optimisation Approach," Energies, MDPI, vol. 15(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Wei & Lin, Boqiang, 2018. "Application value of energy storage in power grid: A special case of China electricity market," Energy, Elsevier, vol. 165(PB), pages 1191-1199.
    2. Ding, Jie & Xu, Yujie & Chen, Haisheng & Sun, Wenwen & Hu, Shan & Sun, Shuang, 2019. "Value and economic estimation model for grid-scale energy storage in monopoly power markets," Applied Energy, Elsevier, vol. 240(C), pages 986-1002.
    3. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    4. Martinez-Laserna, E. & Gandiaga, I. & Sarasketa-Zabala, E. & Badeda, J. & Stroe, D.-I. & Swierczynski, M. & Goikoetxea, A., 2018. "Battery second life: Hype, hope or reality? A critical review of the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 701-718.
    5. Paulo Rotella Junior & Luiz Célio Souza Rocha & Sandra Naomi Morioka & Ivan Bolis & Gianfranco Chicco & Andrea Mazza & Karel Janda, 2021. "Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives," Energies, MDPI, vol. 14(9), pages 1-29, April.
    6. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    7. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
    8. Kazhamiaka, Fiodar & Jochem, Patrick & Keshav, Srinivasan & Rosenberg, Catherine, 2017. "On the influence of jurisdiction on the profitability of residential photovoltaic-storage systems: A multi-national case study," Energy Policy, Elsevier, vol. 109(C), pages 428-440.
    9. Hartmann, Bálint & Divényi, Dániel & Vokony, István, 2018. "Evaluation of business possibilities of energy storage at commercial and industrial consumers – A case study," Applied Energy, Elsevier, vol. 222(C), pages 59-66.
    10. Zheng, Menglian & Wang, Xinhao & Meinrenken, Christoph J. & Ding, Yi, 2018. "Economic and environmental benefits of coordinating dispatch among distributed electricity storage," Applied Energy, Elsevier, vol. 210(C), pages 842-855.
    11. Qiujie Sun & Jingyu Zhou & Zhou Lan & Xiangyang Ma, 2023. "The Economic Influence of Energy Storage Construction in the Context of New Power Systems," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    12. Ayat-Allah Bouramdane & Alexis Tantet & Philippe Drobinski, 2021. "Utility-Scale PV-Battery versus CSP-Thermal Storage in Morocco: Storage and Cost Effect under Penetration Scenarios," Post-Print hal-03344439, HAL.
    13. Lei Zhang & Yingqi Liu & Beibei Pang & Bingxiang Sun & Ari Kokko, 2020. "Second Use Value of China’s New Energy Vehicle Battery: A View Based on Multi-Scenario Simulation," Sustainability, MDPI, vol. 12(1), pages 1-25, January.
    14. Scheller, Fabian & Burkhardt, Robert & Schwarzeit, Robert & McKenna, Russell & Bruckner, Thomas, 2020. "Competition between simultaneous demand-side flexibility options: the case of community electricity storage systems," Applied Energy, Elsevier, vol. 269(C).
    15. Specht, Jan Martin & Madlener, Reinhard, 2023. "Quantifying value pools for distributed flexible energy assets," Energy, Elsevier, vol. 263(PB).
    16. Chen, Yang & Hu, Mengqi & Zhou, Zhi, 2017. "A data-driven analytical approach to enable optimal emerging technologies integration in the co-optimized electricity and ancillary service markets," Energy, Elsevier, vol. 122(C), pages 613-626.
    17. Li, Zhengshuo & Guo, Qinglai & Sun, Hongbin & Wang, Jianhui, 2015. "Storage-like devices in load leveling: Complementarity constraints and a new and exact relaxation method," Applied Energy, Elsevier, vol. 151(C), pages 13-22.
    18. Chen, Yang & Odukomaiya, Adewale & Kassaee, Saiid & O’Connor, Patrick & Momen, Ayyoub M. & Liu, Xiaobing & Smith, Brennan T., 2019. "Preliminary analysis of market potential for a hydropneumatic ground-level integrated diverse energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 1237-1247.
    19. Meinrenken, Christoph J. & Mehmani, Ali, 2019. "Concurrent optimization of thermal and electric storage in commercial buildings to reduce operating cost and demand peaks under time-of-use tariffs," Applied Energy, Elsevier, vol. 254(C).
    20. Graditi, G. & Ippolito, M.G. & Telaretti, E. & Zizzo, G., 2016. "Technical and economical assessment of distributed electrochemical storages for load shifting applications: An Italian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 515-523.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:239:y:2019:i:c:p:1424-1440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.