IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8747-d979159.html
   My bibliography  Save this article

Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect

Author

Listed:
  • Chaoyang Chen

    (School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Hualing Liu

    (School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Yong Xiao

    (China Southern Power Grid Research Institute, China Southern Power Grid, Guangzhou 510630, China)

  • Fagen Zhu

    (China Datang Corporation, Beijing 100033, China)

  • Li Ding

    (Department of Artificial Intelligence and Automation, School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Fuwen Yang

    (School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4222, Australia)

Abstract

In the past two decades, clean energy such as hydro, wind, and solar power has achieved significant development under the “green recovery” global goal, and it may become the key method for countries to realize a low-carbon energy system. Here, the development of renewable energy power generation, the typical hydro-wind-photovoltaic complementary practical project, is summarized, and some key problems in complementary systems such as the description and prediction of the power generation law in large-scale stations, risk management, and coordinated operation are analyzed. In terms of these problems, this paper systematically summarizes the research methods and characteristics of a hydro-wind-solar hybrid system and expounds upon the technical realization process from the prediction and description of wind and solar power station cluster output, the risks brought about by large-scale renewable energy grid-connected operation, and the long-term and short-term coordination modeling and resolution thoughts on the hydro-wind-solar hybrid system in cluster mode. Finally, based on the aforementioned analysis, the existing research gaps are discussed from the standpoints of generation forecast, risk management, and cluster scheduling, and the future work outlook is presented accordingly. A hybrid system that combines hydro, wind, and solar energy is emerging as a way to make up for each other’s shortcomings and will be a fruitful area of study in the future.

Suggested Citation

  • Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8747-:d:979159
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8747/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8747/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    2. Lineykin, Simon & Averbukh, Moshe & Kuperman, Alon, 2014. "An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 282-289.
    3. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
    4. Chang, Martin K. & Eichman, Joshua D. & Mueller, Fabian & Samuelsen, Scott, 2013. "Buffering intermittent renewable power with hydroelectric generation: A case study in California," Applied Energy, Elsevier, vol. 112(C), pages 1-11.
    5. Yanbin Li & Yanting Sun & Junjie Zhang & Feng Zhang, 2022. "Optimal Microgrid System Operating Strategy Considering Variable Wind Power Outputs and the Cooperative Game among Subsystem Operators," Energies, MDPI, vol. 15(18), pages 1-20, September.
    6. Mostafa Bakhtvar & Amer Al-Hinai, 2021. "Robust Operation of Hybrid Solar–Wind Power Plant with Battery Energy Storage System," Energies, MDPI, vol. 14(13), pages 1-18, June.
    7. Wang, Zhenni & Wen, Xin & Tan, Qiaofeng & Fang, Guohua & Lei, Xiaohui & Wang, Hao & Yan, Jinyue, 2021. "Potential assessment of large-scale hydro-photovoltaic-wind hybrid systems on a global scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Wen, Xin & Sun, Yuanliang & Tan, Qiaofeng & Tang, Zhengyang & Wang, Zhenni & Liu, Zhehua & Ding, Ziyu, 2022. "Optimizing the sizes of wind and photovoltaic plants complementarily operating with cascade hydropower stations: Balancing risk and benefit," Applied Energy, Elsevier, vol. 306(PA).
    9. Hassan, Rakibul & Das, Barun K. & Hasan, Mahmudul, 2022. "Integrated off-grid hybrid renewable energy system optimization based on economic, environmental, and social indicators for sustainable development," Energy, Elsevier, vol. 250(C).
    10. Li, He & Liu, Pan & Guo, Shenglian & Ming, Bo & Cheng, Lei & Yang, Zhikai, 2019. "Long-term complementary operation of a large-scale hydro-photovoltaic hybrid power plant using explicit stochastic optimization," Applied Energy, Elsevier, vol. 238(C), pages 863-875.
    11. Holjevac, Ninoslav & Capuder, Tomislav & Zhang, Ning & Kuzle, Igor & Kang, Chongqing, 2017. "Corrective receding horizon scheduling of flexible distributed multi-energy microgrids," Applied Energy, Elsevier, vol. 207(C), pages 176-194.
    12. Tang, Jie & Brouste, Alexandre & Tsui, Kwok Leung, 2015. "Some improvements of wind speed Markov chain modeling," Renewable Energy, Elsevier, vol. 81(C), pages 52-56.
    13. Mashayekh, Salman & Stadler, Michael & Cardoso, Gonçalo & Heleno, Miguel, 2017. "A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids," Applied Energy, Elsevier, vol. 187(C), pages 154-168.
    14. Jia, Rui & He, Mengjiao & Zhang, Xinyu & Zhao, Ziwen & Han, Shuo & Jurasz, Jakub & Chen, Diyi & Xu, Beibei, 2022. "Optimal operation of cascade hydro-wind-photovoltaic complementary generation system with vibration avoidance strategy," Applied Energy, Elsevier, vol. 324(C).
    15. Walter Gil-González & Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Fernando Cruz-Peragón & Gerardo Alcalá, 2020. "Economic Dispatch of Renewable Generators and BESS in DC Microgrids Using Second-Order Cone Optimization," Energies, MDPI, vol. 13(7), pages 1-15, April.
    16. Huang, Kangdi & Liu, Pan & Ming, Bo & Kim, Jong-Suk & Gong, Yu, 2021. "Economic operation of a wind-solar-hydro complementary system considering risks of output shortage, power curtailment and spilled water," Applied Energy, Elsevier, vol. 290(C).
    17. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    18. Gioutsos, Dean Marcus & Blok, Kornelis & van Velzen, Leonore & Moorman, Sjoerd, 2018. "Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe," Applied Energy, Elsevier, vol. 226(C), pages 437-449.
    19. Jafarzadeh Ghoushchi, Saeid & Manjili, Sobhan & Mardani, Abbas & Saraji, Mahyar Kamali, 2021. "An extended new approach for forecasting short-term wind power using modified fuzzy wavelet neural network: A case study in wind power plant," Energy, Elsevier, vol. 223(C).
    20. Sun, Kaiqi & Li, Ke-Jun & Pan, Jiuping & Liu, Yong & Liu, Yilu, 2019. "An optimal combined operation scheme for pumped storage and hybrid wind-photovoltaic complementary power generation system," Applied Energy, Elsevier, vol. 242(C), pages 1155-1163.
    21. Lihui Zhang & He Xin & Jing Wu & Liwei Ju & Zhongfu Tan, 2017. "A Multiobjective Robust Scheduling Optimization Mode for Multienergy Hybrid System Integrated by Wind Power, Solar Photovoltaic Power, and Pumped Storage Power," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-15, August.
    22. Gupta, Akshita & Kumar, Arun & Khatod, Dheeraj Kumar, 2019. "Optimized scheduling of hydropower with increase in solar and wind installations," Energy, Elsevier, vol. 183(C), pages 716-732.
    23. Zhang, Jingjing & Li, Huanhuan & Chen, Diyi & Xu, Beibei & Mahmud, Md Apel, 2021. "Flexibility assessment of a hybrid power system: Hydroelectric units in balancing the injection of wind power," Renewable Energy, Elsevier, vol. 171(C), pages 1313-1326.
    24. Vikas Khare & Savita Nema & Prashant Baredar, 2019. "Reliability analysis of hybrid renewable energy system by fault tree analysis," Energy & Environment, , vol. 30(3), pages 542-555, May.
    25. Xiao, Hao & Pei, Wei & Deng, Wei & Ma, Tengfei & Zhang, Shizhong & Kong, Li, 2021. "Enhancing risk control ability of distribution network for improved renewable energy integration through flexible DC interconnection," Applied Energy, Elsevier, vol. 284(C).
    26. Chen, C. & Li, Y.P. & Huang, G.H., 2013. "An inexact robust optimization method for supporting carbon dioxide emissions management in regional electric-power systems," Energy Economics, Elsevier, vol. 40(C), pages 441-456.
    27. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2014. "The role of large-scale energy storage design and dispatch in the power grid: A study of very high grid penetration of variable renewable resources," Applied Energy, Elsevier, vol. 134(C), pages 75-89.
    28. Yang, Yuqi & Zhou, Jianzhong & Liu, Guangbiao & Mo, Li & Wang, Yongqiang & Jia, Benjun & He, Feifei, 2020. "Multi-plan formulation of hydropower generation considering uncertainty of wind power," Applied Energy, Elsevier, vol. 260(C).
    29. Kougias, Ioannis & Szabó, Sándor & Monforti-Ferrario, Fabio & Huld, Thomas & Bódis, Katalin, 2016. "A methodology for optimization of the complementarity between small-hydropower plants and solar PV systems," Renewable Energy, Elsevier, vol. 87(P2), pages 1023-1030.
    30. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    31. Yin, Yue & Liu, Tianqi & He, Chuan, 2019. "Day-ahead stochastic coordinated scheduling for thermal-hydro-wind-photovoltaic systems," Energy, Elsevier, vol. 187(C).
    32. Wen-Yeau Chang, 2013. "An RBF Neural Network Combined with OLS Algorithm and Genetic Algorithm for Short-Term Wind Power Forecasting," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-9, March.
    33. Ghaithan, Ahmed M. & Mohammed, Awsan & Al-Hanbali, Ahmad & Attia, Ahmed M. & Saleh, Haitham, 2022. "Multi-objective optimization of a photovoltaic-wind- grid connected system to power reverse osmosis desalination plant," Energy, Elsevier, vol. 251(C).
    34. Zhang, Jinhua & Yan, Jie & Infield, David & Liu, Yongqian & Lien, Fue-sang, 2019. "Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model," Applied Energy, Elsevier, vol. 241(C), pages 229-244.
    35. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2016. "Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria," Applied Energy, Elsevier, vol. 168(C), pages 130-145.
    36. Guoliang Luo & Erli Dan & Xiaochun Zhang & Yiwei Guo, 2018. "Why the Wind Curtailment of Northwest China Remains High," Sustainability, MDPI, vol. 10(2), pages 1-26, February.
    37. Jurasz, Jakub & Dąbek, Paweł B. & Kaźmierczak, Bartosz & Kies, Alexander & Wdowikowski, Marcin, 2018. "Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia (Poland)," Energy, Elsevier, vol. 161(C), pages 183-192.
    38. Wang, Xianxun & Mei, Yadong & Kong, Yanjun & Lin, Yuru & Wang, Hao, 2017. "Improved multi-objective model and analysis of the coordinated operation of a hydro-wind-photovoltaic system," Energy, Elsevier, vol. 134(C), pages 813-839.
    39. Celik, Ali Naci & Acikgoz, NasIr, 2007. "Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models," Applied Energy, Elsevier, vol. 84(1), pages 1-15, January.
    40. Rahim, Sahar & Wang, Zhen & Ju, Ping, 2022. "Overview and applications of Robust optimization in the avant-garde energy grid infrastructure: A systematic review," Applied Energy, Elsevier, vol. 319(C).
    41. Liu, Weifeng & Zhu, Feilin & Zhao, Tongtiegang & Wang, Hao & Lei, Xiaohui & Zhong, Ping-an & Fthenakis, Vasilis, 2020. "Optimal stochastic scheduling of hydropower-based compensation for combined wind and photovoltaic power outputs," Applied Energy, Elsevier, vol. 276(C).
    42. Md. Abdullah-Al-Mahbub & Abu Reza Md. Towfiqul Islam & Hussein Almohamad & Ahmed Abdullah Al Dughairi & Motrih Al-Mutiry & Hazem Ghassan Abdo, 2022. "Different Forms of Solar Energy Progress: The Fast-Growing Eco-Friendly Energy Source in Bangladesh for a Sustainable Future," Energies, MDPI, vol. 15(18), pages 1-28, September.
    43. Shukur, Osamah Basheer & Lee, Muhammad Hisyam, 2015. "Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA," Renewable Energy, Elsevier, vol. 76(C), pages 637-647.
    44. Xu, Jian & Wang, Jing & Liao, Siyang & Sun, Yuanzhang & Ke, Deping & Li, Xiong & Liu, Ji & Jiang, Yibo & Wei, Congying & Tang, Bowen, 2018. "Stochastic multi-objective optimization of photovoltaics integrated three-phase distribution network based on dynamic scenarios," Applied Energy, Elsevier, vol. 231(C), pages 985-996.
    45. Fu, Yiwei & Lu, Zongxiang & Hu, Wei & Wu, Shuang & Wang, Yiting & Dong, Ling & Zhang, Jietan, 2019. "Research on joint optimal dispatching method for hybrid power system considering system security," Applied Energy, Elsevier, vol. 238(C), pages 147-163.
    46. Mohammed Guezgouz & Jakub Jurasz & Benaissa Bekkouche, 2019. "Techno-Economic and Environmental Analysis of a Hybrid PV-WT-PSH/BB Standalone System Supplying Various Loads," Energies, MDPI, vol. 12(3), pages 1-28, February.
    47. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    48. Younes Sahri & Youcef Belkhier & Salah Tamalouzt & Nasim Ullah & Rabindra Nath Shaw & Md. Shahariar Chowdhury & Kuaanan Techato, 2021. "Energy Management System for Hybrid PV/Wind/Battery/Fuel Cell in Microgrid-Based Hydrogen and Economical Hybrid Battery/Super Capacitor Energy Storage," Energies, MDPI, vol. 14(18), pages 1-32, September.
    49. Xu, Jiuping & Liu, Liying & Wang, Fengjuan, 2022. "Equilibrium strategy-based economic-reliable approach for day-ahead scheduling towards solar-wind-gas hybrid power generation system: A case study from China," Energy, Elsevier, vol. 240(C).
    50. Chu, Cheng-Ta & Hawkes, Adam D., 2020. "A geographic information system-based global variable renewable potential assessment using spatially resolved simulation," Energy, Elsevier, vol. 193(C).
    51. Shahriari, M. & Cervone, G. & Clemente-Harding, L. & Delle Monache, L., 2020. "Using the analog ensemble method as a proxy measurement for wind power predictability," Renewable Energy, Elsevier, vol. 146(C), pages 789-801.
    52. Qiu, Haifeng & Gu, Wei & Liu, Pengxiang & Sun, Qirun & Wu, Zhi & Lu, Xi, 2022. "Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective," Energy, Elsevier, vol. 251(C).
    53. Zhang, Yi & Cheng, Chuntian & Cao, Rui & Li, Gang & Shen, Jianjian & Wu, Xinyu, 2021. "Multivariate probabilistic forecasting and its performance’s impacts on long-term dispatch of hydro-wind hybrid systems," Applied Energy, Elsevier, vol. 283(C).
    54. Petrakopoulou, Fontina & Robinson, Alexander & Loizidou, Maria, 2016. "Simulation and analysis of a stand-alone solar-wind and pumped-storage hydropower plant," Energy, Elsevier, vol. 96(C), pages 676-683.
    55. Ji, Bin & Yuan, Xiaohui & Chen, Zhihuan & Tian, Hao, 2014. "Improved gravitational search algorithm for unit commitment considering uncertainty of wind power," Energy, Elsevier, vol. 67(C), pages 52-62.
    56. Jinjin Gao & Yuan Zheng & Jianming Li & Xiaoming Zhu & Kan Kan, 2018. "Optimal Model for Complementary Operation of a Photovoltaic-Wind-Pumped Storage System," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-9, December.
    57. Wina Crijns-Graus & Patricia Wild & Mehdi Parvizi Amineh & Jing Hu & Hui Yue, 2022. "International Comparison of Research and Investments in New Renewable Electricity Technologies: A Focus on the European Union and China," Energies, MDPI, vol. 15(17), pages 1-19, September.
    58. Mazidi, Mohammadreza & Monsef, Hassan & Siano, Pierluigi, 2016. "Design of a risk-averse decision making tool for smart distribution network operators under severe uncertainties: An IGDT-inspired augment ε-constraint based multi-objective approach," Energy, Elsevier, vol. 116(P1), pages 214-235.
    59. Cantão, Mauricio P. & Bessa, Marcelo R. & Bettega, Renê & Detzel, Daniel H.M. & Lima, João M., 2017. "Evaluation of hydro-wind complementarity in the Brazilian territory by means of correlation maps," Renewable Energy, Elsevier, vol. 101(C), pages 1215-1225.
    60. Georgios E. Arnaoutakis & Georgia Kefala & Eirini Dakanali & Dimitris Al. Katsaprakakis, 2022. "Combined Operation of Wind-Pumped Hydro Storage Plant with a Concentrating Solar Power Plant for Insular Systems: A Case Study for the Island of Rhodes," Energies, MDPI, vol. 15(18), pages 1-23, September.
    61. Wang, Xuebin & Chang, Jianxia & Meng, Xuejiao & Wang, Yimin, 2018. "Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems," Applied Energy, Elsevier, vol. 229(C), pages 945-962.
    62. Wei, Hu & Hongxuan, Zhang & Yu, Dong & Yiting, Wang & Ling, Dong & Ming, Xiao, 2019. "Short-term optimal operation of hydro-wind-solar hybrid system with improved generative adversarial networks," Applied Energy, Elsevier, vol. 250(C), pages 389-403.
    63. Duchaud, Jean-Laurent & Notton, Gilles & Darras, Christophe & Voyant, Cyril, 2019. "Multi-Objective Particle Swarm optimal sizing of a renewable hybrid power plant with storage," Renewable Energy, Elsevier, vol. 131(C), pages 1156-1167.
    64. Ming, Bo & Liu, Pan & Guo, Shenglian & Zhang, Xiaoqi & Feng, Maoyuan & Wang, Xianxun, 2017. "Optimizing utility-scale photovoltaic power generation for integration into a hydropower reservoir by incorporating long- and short-term operational decisions," Applied Energy, Elsevier, vol. 204(C), pages 432-445.
    65. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhang, Jingwen, 2019. "Hydropower reservoir reoperation to adapt to large-scale photovoltaic power generation," Energy, Elsevier, vol. 179(C), pages 268-279.
    66. Tan, Qiao-feng & Lei, Xiao-hui & Wen, Xin & Fang, Guo-hua & Wang, Xu & Wang, Chao & Ji, Yi & Huang, Xian-feng, 2019. "Two-stage stochastic optimal operation model for hydropower station based on the approximate utility function of the carryover stage," Energy, Elsevier, vol. 183(C), pages 670-682.
    67. Ding, Ziyu & Wen, Xin & Tan, Qiaofeng & Yang, Tiantian & Fang, Guohua & Lei, Xiaohui & Zhang, Yu & Wang, Hao, 2021. "A forecast-driven decision-making model for long-term operation of a hydro-wind-photovoltaic hybrid system," Applied Energy, Elsevier, vol. 291(C).
    68. Nikolakakis, Thomas & Fthenakis, Vasilis, 2011. "The optimum mix of electricity from wind- and solar-sources in conventional power systems: Evaluating the case for New York State," Energy Policy, Elsevier, vol. 39(11), pages 6972-6980.
    69. Wang, Xianxun & Virguez, Edgar & Xiao, Weihua & Mei, Yadong & Patiño-Echeverri, Dalia & Wang, Hao, 2019. "Clustering and dispatching hydro, wind, and photovoltaic power resources with multiobjective optimization of power generation fluctuations: A case study in southwestern China," Energy, Elsevier, vol. 189(C).
    70. Liu, Zifa & Zhang, Zhe & Zhuo, Ranqun & Wang, Xuyang, 2019. "Optimal operation of independent regional power grid with multiple wind-solar-hydro-battery power," Applied Energy, Elsevier, vol. 235(C), pages 1541-1550.
    71. Apichonnabutr, W. & Tiwary, A., 2018. "Trade-offs between economic and environmental performance of an autonomous hybrid energy system using micro hydro," Applied Energy, Elsevier, vol. 226(C), pages 891-904.
    72. Guo, Yi & Ming, Bo & Huang, Qiang & Wang, Yimin & Zheng, Xudong & Zhang, Wei, 2022. "Risk-averse day-ahead generation scheduling of hydro–wind–photovoltaic complementary systems considering the steady requirement of power delivery," Applied Energy, Elsevier, vol. 309(C).
    73. Bird, Lori & Lew, Debra & Milligan, Michael & Carlini, E. Maria & Estanqueiro, Ana & Flynn, Damian & Gomez-Lazaro, Emilio & Holttinen, Hannele & Menemenlis, Nickie & Orths, Antje & Eriksen, Peter Børr, 2016. "Wind and solar energy curtailment: A review of international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 577-586.
    74. Xu, Bin & Zhu, Feilin & Zhong, Ping-an & Chen, Juan & Liu, Weifeng & Ma, Yufei & Guo, Le & Deng, Xiaoliang, 2019. "Identifying long-term effects of using hydropower to complement wind power uncertainty through stochastic programming," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yi & Ming, Bo & Huang, Qiang & Wang, Yimin & Zheng, Xudong & Zhang, Wei, 2022. "Risk-averse day-ahead generation scheduling of hydro–wind–photovoltaic complementary systems considering the steady requirement of power delivery," Applied Energy, Elsevier, vol. 309(C).
    2. Jiang, Jianhua & Ming, Bo & Liu, Pan & Huang, Qiang & Guo, Yi & Chang, Jianxia & Zhang, Wei, 2023. "Refining long-term operation of large hydro–photovoltaic–wind hybrid systems by nesting response functions," Renewable Energy, Elsevier, vol. 204(C), pages 359-371.
    3. Cheng, Qian & Liu, Pan & Ming, Bo & Yang, Zhikai & Cheng, Lei & Liu, Zheyuan & Huang, Kangdi & Xu, Weifeng & Gong, Lanqiang, 2024. "Synchronizing short-, mid-, and long-term operations of hydro-wind-photovoltaic complementary systems," Energy, Elsevier, vol. 305(C).
    4. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Liu, Lu & Lian, Jijian, 2021. "Study on short-term optimal operation of cascade hydro-photovoltaic hybrid systems," Applied Energy, Elsevier, vol. 291(C).
    5. Wang, Yanling & Wen, Xin & Su, Huaying & Qin, Jisen & Kong, Linghui, 2023. "Real-time dispatch of hydro-photovoltaic (PV) hybrid system based on dynamic load reserve capacity," Energy, Elsevier, vol. 285(C).
    6. Huang, Kangdi & Liu, Pan & Ming, Bo & Kim, Jong-Suk & Gong, Yu, 2021. "Economic operation of a wind-solar-hydro complementary system considering risks of output shortage, power curtailment and spilled water," Applied Energy, Elsevier, vol. 290(C).
    7. Mensah, Johnson Herlich Roslee & Santos, Ivan Felipe Silva dos & Raimundo, Danielle Rodrigues & Costa de Oliveira Botan, Maria Cláudia & Barros, Regina Mambeli & Tiago Filho, Geraldo Lucio, 2022. "Energy and economic study of using Pumped Hydropower Storage with renewable resources to recover the Furnas reservoir," Renewable Energy, Elsevier, vol. 199(C), pages 320-334.
    8. Gong, Yu & Liu, Pan & Ming, Bo & Xu, Weifeng & Huang, Kangdi & Li, Xiao, 2021. "Deriving pack rules for hydro–photovoltaic hybrid power systems considering diminishing marginal benefit of energy," Applied Energy, Elsevier, vol. 304(C).
    9. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    10. Huang, Kangdi & Liu, Pan & Kim, Jong-Suk & Xu, Weifeng & Gong, Yu & Cheng, Qian & Zhou, Yong, 2023. "A model coupling current non-adjustable, coming adjustable and remaining stages for daily generation scheduling of a wind-solar-hydro complementary system," Energy, Elsevier, vol. 263(PB).
    11. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    12. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    13. Tan, Qiaofeng & Zhang, Ziyi & Wen, Xin & Fang, Guohua & Xu, Shuo & Nie, Zhuang & Wang, Yanling, 2024. "Risk control of hydropower-photovoltaic multi-energy complementary scheduling based on energy storage allocation," Applied Energy, Elsevier, vol. 358(C).
    14. Liu, Weifeng & Zhu, Feilin & Zhao, Tongtiegang & Wang, Hao & Lei, Xiaohui & Zhong, Ping-an & Fthenakis, Vasilis, 2020. "Optimal stochastic scheduling of hydropower-based compensation for combined wind and photovoltaic power outputs," Applied Energy, Elsevier, vol. 276(C).
    15. Guo, Yi & Ming, Bo & Huang, Qiang & Liu, Pan & Wang, Yimin & Fang, Wei & Zhang, Wei, 2022. "Evaluating effects of battery storage on day-ahead generation scheduling of large hydro–wind–photovoltaic complementary systems," Applied Energy, Elsevier, vol. 324(C).
    16. Cheng, Qian & Liu, Pan & Feng, Maoyuan & Cheng, Lei & Ming, Bo & Luo, Xinran & Liu, Weibo & Xu, Weifeng & Huang, Kangdi & Xia, Jun, 2023. "Complementary operation with wind and photovoltaic power induces the decrease in hydropower efficiency," Applied Energy, Elsevier, vol. 339(C).
    17. Feng, Zhong-kai & Huang, Qing-qing & Niu, Wen-jing & Su, Hua-ying & Li, Shu-shan & Wu, Hui-jun & Wang, Jia-yang, 2024. "Peak operation optimization of cascade hydropower reservoirs and solar power plants considering output forecasting uncertainty," Applied Energy, Elsevier, vol. 358(C).
    18. Lu, Na & Wang, Guangyan & Su, Chengguo & Ren, Zaimin & Peng, Xiaoyue & Sui, Quan, 2024. "Medium- and long-term interval optimal scheduling of cascade hydropower-photovoltaic complementary systems considering multiple uncertainties," Applied Energy, Elsevier, vol. 353(PA).
    19. Sterl, Sebastian & Donk, Peter & Willems, Patrick & Thiery, Wim, 2020. "Turbines of the Caribbean: Decarbonising Suriname's electricity mix through hydro-supported integration of wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Li, He & Liu, Pan & Guo, Shenglian & Zuo, Qiting & Cheng, Lei & Tao, Jie & Huang, Kangdi & Yang, Zhikai & Han, Dongyang & Ming, Bo, 2022. "Integrating teleconnection factors into long-term complementary operating rules for hybrid power systems: A case study of Longyangxia hydro-photovoltaic plant in China," Renewable Energy, Elsevier, vol. 186(C), pages 517-534.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8747-:d:979159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.