IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i20p5134-d1499463.html
   My bibliography  Save this article

Multi-Stage Rolling Grid Expansion Planning for Distribution Networks Considering Conditional Value at Risk

Author

Listed:
  • Junxiao Zhang

    (Grid Planning & Research Center, Guangdong Power Grid Company Limited, Guangzhou 510663, China)

  • Chengmin Wang

    (Key Laboratory of Power Transmission and Power Transformation Control, Ministry of Education, Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Jing Zuo

    (Grid Planning & Research Center, Guangdong Power Grid Company Limited, Guangzhou 510663, China)

  • Chong Gao

    (Grid Planning & Research Center, Guangdong Power Grid Company Limited, Guangzhou 510663, China)

  • Shurong Zheng

    (Grid Planning & Research Center, Guangdong Power Grid Company Limited, Guangzhou 510663, China)

  • Ran Cheng

    (Grid Planning & Research Center, Guangdong Power Grid Company Limited, Guangzhou 510663, China)

  • Yao Duan

    (Grid Planning & Research Center, Guangdong Power Grid Company Limited, Guangzhou 510663, China)

  • Yawu Wang

    (Key Laboratory of Power Transmission and Power Transformation Control, Ministry of Education, Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

Existing single-stage planning and multi-stage non-rolling planning methods for distribution networks have problems such as low equipment utilization efficiency and poor investment benefits. In order to solve the above problems, this paper firstly proposes a multi-stage rolling planning method for distribution networks based on analyzing the limitations of the existing planning methods, which divides the planning cycle of the distribution network into multiple planning stages, and makes rolling amendments to the planning scheme of each stage according to the latest information during the planning cycle. Then, a multi-stage rolling planning model of distribution network taking into account conditional value at risk is established with the objective of minimizing the total investment and operation cost of the distribution network. On the one hand, the users’ electricity bill is taken into account in the objective function, and the necessity of this part of the benefits is demonstrated. On the other hand, the conditional value at risk is used to quantify the uncertainty of the operation cost in the process of the expansion planning of the distribution network, which reduces the operation cost risk of the distribution network. Next, this paper uses the rainflow counting method to characterize the capacity decay characteristics of energy storage in the distribution network, and proposes an iterative solution framework that considers energy storage capacity decay to solve the proposed model. Finally, the proposed method is applied to an 18-node distribution network planning case. This confirms that the multi-stage rolling planning method could improve the investment benefits and reduce the investment cost by approximately 27.27%. Besides, it will increase the total cost by approximately 2750 USD in the case if the users’ electricity bill is not taken into account. And the maximum capacity of energy storage may decay to 87.6% of the initial capacity or even lower during operation, which may cause the line current to exceed the limit if it is not taken into account.

Suggested Citation

  • Junxiao Zhang & Chengmin Wang & Jing Zuo & Chong Gao & Shurong Zheng & Ran Cheng & Yao Duan & Yawu Wang, 2024. "Multi-Stage Rolling Grid Expansion Planning for Distribution Networks Considering Conditional Value at Risk," Energies, MDPI, vol. 17(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5134-:d:1499463
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/20/5134/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/20/5134/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Tingjun & Han, Xiaoqing & Wu, Wenchuan & Sun, Hongbin, 2023. "Robust expansion planning and hardening strategy of meshed multi-energy distribution networks for resilience enhancement," Applied Energy, Elsevier, vol. 341(C).
    2. Xiang, Shizhe & Xu, Da & Wang, Pengda & Bai, Ziyi & Zeng, Lingxiong, 2024. "Optimal expansion planning of 5G and distribution systems considering source-network-load-storage coordination," Applied Energy, Elsevier, vol. 366(C).
    3. Xie, Shiwei & Hu, Zhijian & Wang, Jueying, 2020. "Two-stage robust optimization for expansion planning of active distribution systems coupled with urban transportation networks," Applied Energy, Elsevier, vol. 261(C).
    4. Hemmati, Reza, 2023. "Dynamic expansion planning in active distribution grid integrated with seasonally transferred battery swapping station and solar energy," Energy, Elsevier, vol. 277(C).
    5. Pinto, Rafael S. & Unsihuay-Vila, Clodomiro & Tabarro, Fabricio H., 2021. "Coordinated operation and expansion planning for multiple microgrids and active distribution networks under uncertainties," Applied Energy, Elsevier, vol. 297(C).
    6. Tang, Chong & Liu, Mingbo & Dai, Yue & Wang, Zhijun & Xie, Min, 2019. "Decentralized saddle-point dynamics solution for optimal power flow of distribution systems with multi-microgrids," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Zhou, Siyu & Han, Yang & Chen, Shuheng & Yang, Ping & Mahmoud, Karar & Darwish, Mohamed M.F. & Matti, Lehtonen & Zalhaf, Amr S., 2023. "A multiple uncertainty-based Bi-level expansion planning paradigm for distribution networks complying with energy storage system functionalities," Energy, Elsevier, vol. 275(C).
    8. Xuan, Ang & Shen, Xinwei & Guo, Qinglai & Sun, Hongbin, 2021. "A conditional value-at-risk based planning model for integrated energy system with energy storage and renewables," Applied Energy, Elsevier, vol. 294(C).
    9. Yi, Ji Hyun & Cherkaoui, Rachid & Paolone, Mario & Shchetinin, Dmitry & Knezovic, Katarina, 2022. "Expansion planning of active distribution networks achieving their dispatchability via energy storage systems," Applied Energy, Elsevier, vol. 326(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rastgou, Abdollah, 2024. "Distribution network expansion planning: An updated review of current methods and new challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Qiu, Yibin & Li, Qi & Wang, Tianhong & Yin, Liangzhen & Chen, Weirong & Liu, Hong, 2022. "Optimal planning of Cross-regional hydrogen energy storage systems considering the uncertainty," Applied Energy, Elsevier, vol. 326(C).
    3. Xiang, Yue & Dai, Jiakun & Xue, Ping & Liu, Junyong, 2023. "Autonomous topology planning for distribution network expansion: A learning-based decoupled optimization method," Applied Energy, Elsevier, vol. 348(C).
    4. Zhu, Junpeng & Huang, Yong & Lu, Shuai & Shen, Mengya & Yuan, Yue, 2024. "Incorporating local uncertainty management into distribution system planning: An adaptive robust optimization approach," Applied Energy, Elsevier, vol. 363(C).
    5. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    6. Weifeng Xu & Bing Yu & Qing Song & Liguo Weng & Man Luo & Fan Zhang, 2022. "Economic and Low-Carbon-Oriented Distribution Network Planning Considering the Uncertainties of Photovoltaic Generation and Load Demand to Achieve Their Reliability," Energies, MDPI, vol. 15(24), pages 1-15, December.
    7. Zhu, Xingxu & Hou, Xiangchen & Li, Junhui & Yan, Gangui & Li, Cuiping & Wang, Dongbo, 2023. "Distributed online prediction optimization algorithm for distributed energy resources considering the multi-periods optimal operation," Applied Energy, Elsevier, vol. 348(C).
    8. Chen, Lei & Jiang, Yuqi & Zheng, Shencong & Deng, Xinyi & Chen, Hongkun & Islam, Md. Rabiul, 2023. "A two-layer optimal configuration approach of energy storage systems for resilience enhancement of active distribution networks," Applied Energy, Elsevier, vol. 350(C).
    9. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    10. Zhu, Yilin & Xu, Yujie & Chen, Haisheng & Guo, Huan & Zhang, Hualiang & Zhou, Xuezhi & Shen, Haotian, 2023. "Optimal dispatch of a novel integrated energy system combined with multi-output organic Rankine cycle and hybrid energy storage," Applied Energy, Elsevier, vol. 343(C).
    11. Xie, Shiwei & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks," Applied Energy, Elsevier, vol. 269(C).
    12. Li, Zepeng & Wu, Qiuwei & Li, Hui & Nie, Chengkai & Tan, Jin, 2024. "Distributed low-carbon economic dispatch of integrated power and transportation system," Applied Energy, Elsevier, vol. 353(PA).
    13. Chen, Yuanyi & Hu, Simon & Zheng, Yanchong & Xie, Shiwei & Hu, Qinru & Yang, Qiang, 2024. "Coordinated expansion planning of coupled power and transportation networks considering dynamic network equilibrium," Applied Energy, Elsevier, vol. 360(C).
    14. Xie, Shiwei & Zheng, Jieyun & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "Urban multi-energy network optimization: An enhanced model using a two-stage bound-tightening approach," Applied Energy, Elsevier, vol. 277(C).
    15. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    16. Jing, Xiang & Qin, Wenping & Yao, Hongmin & Han, Xiaoqing & Wang, Peng, 2024. "Resilience-oriented planning strategy for the cyber-physical ADN under malicious attacks," Applied Energy, Elsevier, vol. 353(PA).
    17. Huang, Yan & Ju, Yuntao & Ma, Kang & Short, Michael & Chen, Tao & Zhang, Ruosi & Lin, Yi, 2022. "Three-phase optimal power flow for networked microgrids based on semidefinite programming convex relaxation," Applied Energy, Elsevier, vol. 305(C).
    18. Chen, Xiaodong & Ge, Xinxin & Sun, Rongfu & Wang, Fei & Mi, Zengqiang, 2024. "A SVM based demand response capacity prediction model considering internal factors under composite program," Energy, Elsevier, vol. 300(C).
    19. Mu, Yunfei & Wang, Congshan & Cao, Yan & Jia, Hongjie & Zhang, Qingzhu & Yu, Xiaodan, 2022. "A CVaR-based risk assessment method for park-level integrated energy system considering the uncertainties and correlation of energy prices," Energy, Elsevier, vol. 247(C).
    20. Liu, Fan & Duan, Jiandong & Wu, Chen & Tian, Qinxing, 2024. "Risk-averse distributed optimization for integrated electricity-gas systems considering uncertainties of Wind-PV and power-to-gas," Renewable Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5134-:d:1499463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.