IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v185y2017ip2p1324-1335.html
   My bibliography  Save this article

Quasi-steady state simulation of an organic Rankine cycle for waste heat recovery in a passenger vessel

Author

Listed:
  • Mondejar, Maria E.
  • Ahlgren, Fredrik
  • Thern, Marcus
  • Genrup, Magnus

Abstract

In this work we present the quasi-steady state simulation of a regenerative organic Rankine cycle (ORC) integrated in a passenger vessel, over a standard round trip. The study case is the M/S Birka Stockholm cruise ship, which covers a daily route between Stockholm (Sweden) and Mariehamn (Finland). Experimental data of the exhaust gas temperatures, engine loads, and electricity demand on board were logged over a period of four weeks. These data where used as inputs for a simulation model of an ORC for waste heat recovery of the exhaust gases. A quasi-steady state simulation was carried out on an off-design model, based on optimized design conditions, to estimate the average net power production of the ship over a round trip. The maximum net power production of the ORC during the round trip was estimated to supply approximately 22% of the total power demand on board. The results showed a potential for ORC as a solution for the maritime transport sector to accomplish the new and more restrictive regulations on emissions, and to reduce the total fuel consumption.

Suggested Citation

  • Mondejar, Maria E. & Ahlgren, Fredrik & Thern, Marcus & Genrup, Magnus, 2017. "Quasi-steady state simulation of an organic Rankine cycle for waste heat recovery in a passenger vessel," Applied Energy, Elsevier, vol. 185(P2), pages 1324-1335.
  • Handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1324-1335
    DOI: 10.1016/j.apenergy.2016.03.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191630335X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.03.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Jian & Li, Yan & Gu, Chun-wei & Zhang, Li, 2014. "Thermodynamic analysis and performance optimization of an ORC (Organic Rankine Cycle) system for multi-strand waste heat sources in petroleum refining industry," Energy, Elsevier, vol. 71(C), pages 673-680.
    2. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
    3. Pasini, Gianluca & Lutzemberger, Giovanni & Frigo, Stefano & Marelli, Silvia & Ceraolo, Massimo & Gentili, Roberto & Capobianco, Massimo, 2016. "Evaluation of an electric turbo compound system for SI engines: A numerical approach," Applied Energy, Elsevier, vol. 162(C), pages 527-540.
    4. Carcasci, Carlo & Ferraro, Riccardo & Miliotti, Edoardo, 2014. "Thermodynamic analysis of an organic Rankine cycle for waste heat recovery from gas turbines," Energy, Elsevier, vol. 65(C), pages 91-100.
    5. Mirko Grljušić & Vladimir Medica & Gojmir Radica, 2015. "Calculation of Efficiencies of a Ship Power Plant Operating with Waste Heat Recovery through Combined Heat and Power Production," Energies, MDPI, vol. 8(5), pages 1-27, May.
    6. Siddiqi, M. Aslam & Atakan, Burak, 2012. "Alkanes as fluids in Rankine cycles in comparison to water, benzene and toluene," Energy, Elsevier, vol. 45(1), pages 256-263.
    7. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Schampheleire, S. & De Paepe, M., 2013. "Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system," Applied Energy, Elsevier, vol. 111(C), pages 871-881.
    8. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine," Applied Energy, Elsevier, vol. 149(C), pages 1-12.
    9. Quoilin, Sylvain & Aumann, Richard & Grill, Andreas & Schuster, Andreas & Lemort, Vincent & Spliethoff, Hartmut, 2011. "Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles," Applied Energy, Elsevier, vol. 88(6), pages 2183-2190, June.
    10. Larsen, Ulrik & Sigthorsson, Oskar & Haglind, Fredrik, 2014. "A comparison of advanced heat recovery power cycles in a combined cycle for large ships," Energy, Elsevier, vol. 74(C), pages 260-268.
    11. Larsen, Ulrik & Pierobon, Leonardo & Haglind, Fredrik & Gabrielii, Cecilia, 2013. "Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection," Energy, Elsevier, vol. 55(C), pages 803-812.
    12. Di Battista, D. & Mauriello, M. & Cipollone, R., 2015. "Waste heat recovery of an ORC-based power unit in a turbocharged diesel engine propelling a light duty vehicle," Applied Energy, Elsevier, vol. 152(C), pages 109-120.
    13. Larsen, Ulrik & Pierobon, Leonardo & Wronski, Jorrit & Haglind, Fredrik, 2014. "Multiple regression models for the prediction of the maximum obtainable thermal efficiency of organic Rankine cycles," Energy, Elsevier, vol. 65(C), pages 503-510.
    14. Florian Heberle & Dieter Brüggemann, 2014. "Thermoeconomic Analysis of Hybrid Power Plant Concepts for Geothermal Combined Heat and Power Generation," Energies, MDPI, vol. 7(7), pages 1-16, July.
    15. Shu, Gequn & Gao, Yuanyuan & Tian, Hua & Wei, Haiqiao & Liang, Xingyu, 2014. "Study of mixtures based on hydrocarbons used in ORC (Organic Rankine Cycle) for engine waste heat recovery," Energy, Elsevier, vol. 74(C), pages 428-438.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Meng & Zhou, Yuhao & Miao, Zheng & Yan, Peiwei & Zhang, Manzheng & Xu, Jinliang, 2024. "Multi-condition operating characteristics and optimization of a small-scale ORC system," Energy, Elsevier, vol. 290(C).
    2. Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Vaupel, Yannic & Huster, Wolfgang R. & Mhamdi, Adel & Mitsos, Alexander, 2021. "Optimal operating policies for organic Rankine cycles for waste heat recovery under transient conditions," Energy, Elsevier, vol. 224(C).
    4. Wang, Enhua & Yu, Zhibin & Zhang, Hongguang & Yang, Fubin, 2017. "A regenerative supercritical-subcritical dual-loop organic Rankine cycle system for energy recovery from the waste heat of internal combustion engines," Applied Energy, Elsevier, vol. 190(C), pages 574-590.
    5. Kim, Deok Han & Park, Byung Ho & Kwon, Kilsung & Li, Longnan & Kim, Daejoong, 2017. "Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery," Applied Energy, Elsevier, vol. 189(C), pages 201-210.
    6. Zhao, Mingru & Canova, Marcello & Tian, Hua & Shu, Gequn, 2019. "Design space exploration for waste heat recovery system in automotive application under driving cycle," Energy, Elsevier, vol. 176(C), pages 980-990.
    7. Catapano, F. & Frazzica, A. & Freni, A. & Manzan, M. & Micheli, D. & Palomba, V. & Sementa, P. & Vaglieco, B.M., 2022. "Development and experimental testing of an integrated prototype based on Stirling, ORC and a latent thermal energy storage system for waste heat recovery in naval application," Applied Energy, Elsevier, vol. 311(C).
    8. Gürgen, Samet & Altın, İsmail, 2022. "Novel decision-making strategy for working fluid selection in Organic Rankine Cycle: A case study for waste heat recovery of a marine diesel engine," Energy, Elsevier, vol. 252(C).
    9. Geertsma, R.D. & Visser, K. & Negenborn, R.R., 2018. "Adaptive pitch control for ships with diesel mechanical and hybrid propulsion," Applied Energy, Elsevier, vol. 228(C), pages 2490-2509.
    10. Ouyang, Tiancheng & Pan, Mingming & Tan, Xianlin & Li, Lulu & Huang, Youbin & Mo, Chunlan, 2024. "Power prediction and packed bed heat storage control for marine diesel engine waste heat recovery," Applied Energy, Elsevier, vol. 357(C).
    11. Rech, Sergio & Zandarin, Simone & Lazzaretto, Andrea & Frangopoulos, Christos A., 2017. "Design and off-design models of single and two-stage ORC systems on board a LNG carrier for the search of the optimal performance and control strategy," Applied Energy, Elsevier, vol. 204(C), pages 221-241.
    12. Li, Ligeng & Tian, Hua & Shi, Lingfeng & Wang, Jingyu & Li, Min & Shu, Gequn, 2021. "Adaptive flow assignment for CO2 transcritical power cycle (CTPC): An engine operational profile-based off-design study," Energy, Elsevier, vol. 225(C).
    13. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).
    14. Delsoto, G.S. & Battisti, F.G. & da Silva, A.K., 2023. "Dynamic modeling and control of a solar-powered Brayton cycle using supercritical CO2 and optimization of its thermal energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 336-356.
    15. Konur, Olgun & Yuksel, Onur & Aykut Korkmaz, S. & Ozgur Colpan, C. & Saatcioglu, Omur Y. & Koseoglu, Burak, 2023. "Operation-dependent exergetic sustainability assessment and environmental analysis on a large tanker ship utilizing Organic Rankine cycle system," Energy, Elsevier, vol. 262(PA).
    16. Zhu, Yilin & Li, Weiyi & Sun, Guanzhong & Li, Haojie, 2018. "Thermo-economic analysis based on objective functions of an organic Rankine cycle for waste heat recovery from marine diesel engine," Energy, Elsevier, vol. 158(C), pages 343-356.
    17. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos, 2019. "Impact of carbon pricing on the cruise ship energy systems optimal configuration," Energy, Elsevier, vol. 175(C), pages 952-966.
    18. Francesco Baldi & Fredrik Ahlgren & Tuong-Van Nguyen & Marcus Thern & Karin Andersson, 2018. "Energy and Exergy Analysis of a Cruise Ship," Energies, MDPI, vol. 11(10), pages 1-41, September.
    19. Li, Zhuochao & Zhang, Haoran & Meng, Jing & Long, Yin & Yan, Yamin & Li, Meixuan & Huang, Zhongliang & Liang, Yongtu, 2020. "Reducing carbon footprint of deep-sea oil and gas field exploitation by optimization for Floating Production Storage and Offloading," Applied Energy, Elsevier, vol. 261(C).
    20. Andrea Cinocca & Marco Di Bartolomeo & Roberto Cipollone & Roberto Carapellucci, 2020. "A Definitive Model of a Small-Scale Concentrated Solar Power Hybrid Plant Using Air as Heat Transfer Fluid with a Thermal Storage Section and ORC Plants for Energy Recovery," Energies, MDPI, vol. 13(18), pages 1-22, September.
    21. Armellini, A. & Daniotti, S. & Pinamonti, P. & Reini, M., 2018. "Evaluation of gas turbines as alternative energy production systems for a large cruise ship to meet new maritime regulations," Applied Energy, Elsevier, vol. 211(C), pages 306-317.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
    2. Zhu, Yilin & Li, Weiyi & Sun, Guanzhong & Li, Haojie, 2018. "Thermo-economic analysis based on objective functions of an organic Rankine cycle for waste heat recovery from marine diesel engine," Energy, Elsevier, vol. 158(C), pages 343-356.
    3. Yang, Min-Hsiung, 2016. "Optimizations of the waste heat recovery system for a large marine diesel engine based on transcritical Rankine cycle," Energy, Elsevier, vol. 113(C), pages 1109-1124.
    4. Gürgen, Samet & Altın, İsmail, 2022. "Novel decision-making strategy for working fluid selection in Organic Rankine Cycle: A case study for waste heat recovery of a marine diesel engine," Energy, Elsevier, vol. 252(C).
    5. Jesper Graa Andreasen & Andrea Meroni & Fredrik Haglind, 2017. "A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships," Energies, MDPI, vol. 10(4), pages 1-23, April.
    6. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
    7. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    9. Larsen, Ulrik & Pierobon, Leonardo & Baldi, Francesco & Haglind, Fredrik & Ivarsson, Anders, 2015. "Development of a model for the prediction of the fuel consumption and nitrogen oxides emission trade-off for large ships," Energy, Elsevier, vol. 80(C), pages 545-555.
    10. Francesco Calise & Davide Capuano & Laura Vanoli, 2015. "Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant," Energies, MDPI, vol. 8(4), pages 1-41, April.
    11. Scaccabarozzi, Roberto & Tavano, Michele & Invernizzi, Costante Mario & Martelli, Emanuele, 2018. "Comparison of working fluids and cycle optimization for heat recovery ORCs from large internal combustion engines," Energy, Elsevier, vol. 158(C), pages 396-416.
    12. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
    13. Panesar, Angad Singh, 2016. "An innovative organic Rankine cycle approach for high temperature applications," Energy, Elsevier, vol. 115(P2), pages 1436-1450.
    14. Rech, Sergio & Zandarin, Simone & Lazzaretto, Andrea & Frangopoulos, Christos A., 2017. "Design and off-design models of single and two-stage ORC systems on board a LNG carrier for the search of the optimal performance and control strategy," Applied Energy, Elsevier, vol. 204(C), pages 221-241.
    15. Mat Nawi, Z. & Kamarudin, S.K. & Sheikh Abdullah, S.R. & Lam, S.S., 2019. "The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle," Energy, Elsevier, vol. 166(C), pages 17-31.
    16. Meroni, Andrea & Andreasen, Jesper Graa & Persico, Giacomo & Haglind, Fredrik, 2018. "Optimization of organic Rankine cycle power systems considering multistage axial turbine design," Applied Energy, Elsevier, vol. 209(C), pages 339-354.
    17. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    18. Wang, Enhua & Yu, Zhibin & Zhang, Hongguang & Yang, Fubin, 2017. "A regenerative supercritical-subcritical dual-loop organic Rankine cycle system for energy recovery from the waste heat of internal combustion engines," Applied Energy, Elsevier, vol. 190(C), pages 574-590.
    19. Lion, Simone & Taccani, Rodolfo & Vlaskos, Ioannis & Scrocco, Pietro & Vouvakos, Xenakis & Kaiktsis, Lambros, 2019. "Thermodynamic analysis of waste heat recovery using Organic Rankine Cycle (ORC) for a two-stroke low speed marine Diesel engine in IMO Tier II and Tier III operation," Energy, Elsevier, vol. 183(C), pages 48-60.
    20. Rivera-Alvarez, Alejandro & Coleman, Michael J. & Ordonez, Juan C., 2015. "Ship weight reduction and efficiency enhancement through combined power cycles," Energy, Elsevier, vol. 93(P1), pages 521-533.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1324-1335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.