IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i20p5190-d1501777.html
   My bibliography  Save this article

Key Issues of Salt Cavern Flow Battery

Author

Listed:
  • Si Huang

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yinping Li

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xilin Shi

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yahua Liu

    (School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China)

  • Hongling Ma

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Peng Li

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yuanxi Liu

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xin Liu

    (Institut für Geotechnik, Universität für Bodenkultur, Feistmantelstraße 4, 1180 Vienna, Austria)

  • Mingnan Xu

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Chunhe Yang

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Salt cavern flow batteries (SCFBs) are an energy storage technology that utilize salt caverns to store electrolytes of flow batteries with a saturated NaCl solution as the supporting electrolyte. However, the geological characteristics of salt caverns differ significantly from above-ground storage tanks, leading to complex issues in storing electrolytes within salt caverns. Therefore, investigating and summarizing these issues is crucial for the advancement of SCFB technology. This paper’s innovation lies in its comprehensive review of the current state and development trends in SCFBs both domestically and internationally. First, the current development status of SCFB energy storage technology both domestically and internationally is summarized. Then, eight main issues are proposed from the perspectives of salt cavern geological characteristics (tightness, conductivity, ions, and temperature) and electrolyte properties (selection, permeability, corrosion, and concentration). Finally, a novel SCFB system is proposed to address the most critical issue, which is the low concentration and uneven distribution of active materials in the current SCFB system. The review in this paper not only comprehensively summarizes the development status of SCFBs both domestically and internationally, but also points out the direction for the future research focussing on SCFBs.

Suggested Citation

  • Si Huang & Yinping Li & Xilin Shi & Yahua Liu & Hongling Ma & Peng Li & Yuanxi Liu & Xin Liu & Mingnan Xu & Chunhe Yang, 2024. "Key Issues of Salt Cavern Flow Battery," Energies, MDPI, vol. 17(20), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5190-:d:1501777
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/20/5190/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/20/5190/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaopeng Liang & Hongling Ma & Rui Cai & Kai Zhao & Xuan Wang & Zhuyan Zheng & Xilin Shi & Chunhe Yang, 2023. "Study of Impact of Sediment on the Stability of Salt Cavern Underground Gas Storage," Energies, MDPI, vol. 16(23), pages 1-23, November.
    2. Bloch, Harry & Rafiq, Shuddhasattwa & Salim, Ruhul, 2012. "Coal consumption, CO2 emission and economic growth in China: Empirical evidence and policy responses," Energy Economics, Elsevier, vol. 34(2), pages 518-528.
    3. Wei, Liu & Jie, Chen & Deyi, Jiang & Xilin, Shi & Yinping, Li & Daemen, J.J.K. & Chunhe, Yang, 2016. "Tightness and suitability evaluation of abandoned salt caverns served as hydrocarbon energies storage under adverse geological conditions (AGC)," Applied Energy, Elsevier, vol. 178(C), pages 703-720.
    4. Wei, Xinxing & Ban, Shengnan & Shi, Xilin & Li, Peng & Li, Yinping & Zhu, Shijie & Yang, Kun & Bai, Weizheng & Yang, Chunhe, 2023. "Carbon and energy storage in salt caverns under the background of carbon neutralization in China," Energy, Elsevier, vol. 272(C).
    5. Christophe McGlade & Paul Ekins, 2015. "The geographical distribution of fossil fuels unused when limiting global warming to 2 °C," Nature, Nature, vol. 517(7533), pages 187-190, January.
    6. Wei, Xinxing & Shi, Xilin & Li, Yinping & Li, Peng & Ban, Shengnan & Zhao, Kai & Ma, Hongling & Liu, Hejuan & Yang, Chunhe, 2023. "A comprehensive feasibility evaluation of salt cavern oil energy storage system in China," Applied Energy, Elsevier, vol. 351(C).
    7. Liu, Xin & Shi, Xilin & Li, Yinping & Li, Peng & Zhao, Kai & Ma, Hongling & Yang, Chunhe, 2021. "Maximum gas production rate for salt cavern gas storages," Energy, Elsevier, vol. 234(C).
    8. Karandikar, Parashuram Balwant & Talange, Dhananjay Balu & Mhaskar, Uday Prakashrao & Bansal, Ramesh, 2012. "Development, modeling and characterization of aqueous metal oxide based supercapacitor," Energy, Elsevier, vol. 40(1), pages 131-138.
    9. Duan, Z.N. & Qu, Z.G. & Wang, Q. & Wang, J.J., 2019. "Structural modification of vanadium redox flow battery with high electrochemical corrosion resistance," Applied Energy, Elsevier, vol. 250(C), pages 1632-1640.
    10. Weber, Timothy & Stocks, Ryan & Blakers, Andrew & Nadolny, Anna & Cheng, Cheng, 2024. "A global atlas of pumped hydro systems that repurpose existing mining sites," Renewable Energy, Elsevier, vol. 224(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Shijie & Shi, Xilin & Yang, Chunhe & Li, Yinping & Li, Hang & Yang, Kun & Wei, Xinxing & Bai, Weizheng & Liu, Xin, 2023. "Hydrogen loss of salt cavern hydrogen storage," Renewable Energy, Elsevier, vol. 218(C).
    2. Wei, Xinxing & Shi, Xilin & Li, Yinping & Li, Peng & Ban, Shengnan & Zhao, Kai & Ma, Hongling & Liu, Hejuan & Yang, Chunhe, 2023. "A comprehensive feasibility evaluation of salt cavern oil energy storage system in China," Applied Energy, Elsevier, vol. 351(C).
    3. Xue, Tianfu & Shi, Xilin & Wang, Guibin & Liu, Xin & Wei, Xinxing & Ding, Shuanglong & Fu, Xinghui, 2024. "Study on repairing technical parameters of irregular gas storage salt caverns," Energy, Elsevier, vol. 293(C).
    4. Si Huang & Yinping Li & Xilin Shi & Weizheng Bai & Yashuai Huang & Yang Hong & Xiaoyi Liu & Hongling Ma & Peng Li & Mingnan Xu & Tianfu Xue, 2024. "The Role of Underground Salt Caverns in Renewable Energy Peaking: A Review," Energies, MDPI, vol. 17(23), pages 1-23, November.
    5. Li, Wenjing & Miao, Xiuxiu & Wang, Jianfu & Li, Xiaozhao, 2023. "Study on thermodynamic behaviour of natural gas and thermo-mechanical response of salt caverns for underground gas storage," Energy, Elsevier, vol. 262(PB).
    6. Xie, Lingzhi & Yuan, Ziran & He, Bo & Wang, Runxi, 2024. "Experimental and molecular dynamics studies on the multiscale permeability properties of various gases in salt rock," Energy, Elsevier, vol. 290(C).
    7. Joaquín Bernal-Ramírez & Jair Ojeda-Joya & Camila Agudelo-Rivera & Felipe Clavijo-Ramírez & Carolina Durana-Ángel & Clark Granger-Castaño & Daniel Osorio-Rodríguez & Daniel Parra-Amado & José Pulido &, 2022. "Impacto macroeconómico del cambio climático en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 102, pages 1-62, July.
    8. Bloch, Harry & Rafiq, Shuddhasattwa & Salim, Ruhul, 2015. "Economic growth with coal, oil and renewable energy consumption in China: Prospects for fuel substitution," Economic Modelling, Elsevier, vol. 44(C), pages 104-115.
    9. Azem Duraku, 2021. "Public Expenditures Through Public Procurement," European Journal of Engineering and Formal Sciences Articles, Revistia Research and Publishing, vol. 2, 2019.
    10. Waldemar Karpa & Antonio Grginović, 2021. "(Not So) Stranded: The Case of Coal in Poland," Energies, MDPI, vol. 14(24), pages 1-16, December.
    11. Tomiwa Sunday Adebayo & Abraham Ayobamiji Awosusi & Seun Damola Oladipupo & Ephraim Bonah Agyekum & Arunkumar Jayakumar & Nallapaneni Manoj Kumar, 2021. "Dominance of Fossil Fuels in Japan’s National Energy Mix and Implications for Environmental Sustainability," IJERPH, MDPI, vol. 18(14), pages 1-20, July.
    12. Vasiliki Tzelepi & Myrto Zeneli & Dimitrios-Sotirios Kourkoumpas & Emmanouil Karampinis & Antonios Gypakis & Nikos Nikolopoulos & Panagiotis Grammelis, 2020. "Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review," Energies, MDPI, vol. 13(13), pages 1-26, July.
    13. Bretschger, Lucas, 2021. "Getting the Costs of Environmental Protection Right: Why Climate Policy Is Inexpensive in the End," Ecological Economics, Elsevier, vol. 188(C).
    14. Xu, Le & Zhao, Yan & Lian, Jiabiao & Xu, Yuanguo & Bao, Jian & Qiu, Jingxia & Xu, Li & Xu, Hui & Hua, Mingqing & Li, Huaming, 2017. "Morphology controlled preparation of ZnCo2O4 nanostructures for asymmetric supercapacitor with ultrahigh energy density," Energy, Elsevier, vol. 123(C), pages 296-304.
    15. Agarwala, Matthew & Burke, Matt & Klusak, Patrycja & Mohaddes, Kamiar & Volz, Ulrich & Zenghelis, Dimitri, 2021. "Climate Change And Fiscal Sustainability: Risks And Opportunities," National Institute Economic Review, National Institute of Economic and Social Research, vol. 258, pages 28-46, November.
    16. Yusifzada, Tural, 2022. "Response of Inflation to the Climate Stress: Evidence from Azerbaijan," MPRA Paper 116522, University Library of Munich, Germany, revised 20 Sep 2022.
    17. Gustav Engström & Johan Gars, 2016. "Climatic Tipping Points and Optimal Fossil-Fuel Use," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 541-571, November.
    18. Konrad, Kai A. & Lommerud, Kjell Erik, 2021. "Effective climate policy needs non-combustion uses for hydrocarbons," Energy Policy, Elsevier, vol. 157(C).
    19. Antoine GODIN & Emanuele CAMPIGLIO & Eric KEMP-BENEDICT, 2017. "Networks of stranded assets: A case for a balance sheet approach," Working Paper d51a41b5-00ba-40b4-abe6-5, Agence française de développement.
    20. Insley, Margaret, 2017. "Resource extraction with a carbon tax and regime switching prices: Exercising your options," Energy Economics, Elsevier, vol. 67(C), pages 1-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5190-:d:1501777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.