IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p360-d1568076.html
   My bibliography  Save this article

A Review of Enhanced Methods for Oil Recovery from Sediment Void Oil Storage in Underground Salt Caverns

Author

Listed:
  • Xinxing Wei

    (State Key Laboratory of Geomechanics and Geotechnical Engineering Safety, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xilin Shi

    (State Key Laboratory of Geomechanics and Geotechnical Engineering Safety, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yinping Li

    (State Key Laboratory of Geomechanics and Geotechnical Engineering Safety, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Hubei Key Laboratory of Geo-Environmental Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China)

  • Peng Li

    (State Key Laboratory of Geomechanics and Geotechnical Engineering Safety, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Mingnan Xu

    (State Key Laboratory of Geomechanics and Geotechnical Engineering Safety, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yashuai Huang

    (State Key Laboratory of Geomechanics and Geotechnical Engineering Safety, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yang Hong

    (State Key Laboratory of Geomechanics and Geotechnical Engineering Safety, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Salt caverns are recognized as an excellent medium for energy storage. However, due to the unique characteristics of China’s bedded salt formations, which contain numerous salt layers and a high concentration of insoluble impurities, significant accumulation at the bottom of salt caverns occurs, leading to the formation of extensive sediment voids. These sediment voids offer a potential space for underground oil storage, referred to as sediment void oil storage (SVOS). Oil recovery process from these sediment voids is a critical process. This paper summarizes the oil recovery technologies for SVOS and identifies four key factors—geological evaluation, stability evaluation, tightness evaluation, and oil storage capacity—all of which influence enhance oil recovery from sediment voids. This paper also outlines the overall oil recovery process, presents oil recovery experiments, and discusses oil recovery methods for enhancing oil recovery from sediment void. Additionally, it addresses the challenges of oil recovery in SVOS and explores its potential advantages and applications. The findings suggest that salt cavern sediment voids, as a promising storage space, provide a new approach to realize oil recovery and can overcome the limitations associated with cavern construction in high-impurity salt mines. The oil recovery from the sediment void is feasible, and China has rich rock salt and other convenient conditions to develop SVOS technology.

Suggested Citation

  • Xinxing Wei & Xilin Shi & Yinping Li & Peng Li & Mingnan Xu & Yashuai Huang & Yang Hong, 2025. "A Review of Enhanced Methods for Oil Recovery from Sediment Void Oil Storage in Underground Salt Caverns," Energies, MDPI, vol. 18(2), pages 1-25, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:360-:d:1568076
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/360/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/360/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaopeng Liang & Hongling Ma & Rui Cai & Kai Zhao & Xuan Wang & Zhuyan Zheng & Xilin Shi & Chunhe Yang, 2023. "Study of Impact of Sediment on the Stability of Salt Cavern Underground Gas Storage," Energies, MDPI, vol. 16(23), pages 1-23, November.
    2. Oleg Bazaluk & Orest Slabyi & Vasyl Vekeryk & Andrii Velychkovych & Liubomyr Ropyak & Vasyl Lozynskyi, 2021. "A Technology of Hydrocarbon Fluid Production Intensification by Productive Stratum Drainage Zone Reaming," Energies, MDPI, vol. 14(12), pages 1-15, June.
    3. Pan, Lingying & Liu, Pei & Li, Zheng, 2017. "A system dynamic analysis of China’s oil supply chain: Over-capacity and energy security issues," Applied Energy, Elsevier, vol. 188(C), pages 508-520.
    4. Wei, Xinxing & Ban, Shengnan & Shi, Xilin & Li, Peng & Li, Yinping & Zhu, Shijie & Yang, Kun & Bai, Weizheng & Yang, Chunhe, 2023. "Carbon and energy storage in salt caverns under the background of carbon neutralization in China," Energy, Elsevier, vol. 272(C).
    5. Wei, Xinxing & Shi, Xilin & Ma, Hongling & Ban, Shengnan & Bai, Weizheng, 2024. "Experimental investigation on the oil extraction process for a novel underground oil storage method: Oil storage in salt cavern insoluble sediment voids," Energy, Elsevier, vol. 309(C).
    6. Wei, Xinxing & Shi, Xilin & Li, Yinping & Li, Peng & Ban, Shengnan & Zhao, Kai & Ma, Hongling & Liu, Hejuan & Yang, Chunhe, 2023. "A comprehensive feasibility evaluation of salt cavern oil energy storage system in China," Applied Energy, Elsevier, vol. 351(C).
    7. Wei, Xinxing & Shi, Xilin & Li, Yinping & Liu, Hejuan & Li, Peng & Ban, Shengnan & Liang, Xiaopeng & Zhu, Shijie & Zhao, Kai & Yang, Kun & Huang, Si & Yang, Chunhe, 2023. "Advances in research on gas storage in sediment void of salt cavern in China," Energy, Elsevier, vol. 284(C).
    8. Tarkowski, Radosław & Lankof, Leszek & Luboń, Katarzyna & Michalski, Jan, 2024. "Hydrogen storage capacity of salt caverns and deep aquifers versus demand for hydrogen storage: A case study of Poland," Applied Energy, Elsevier, vol. 355(C).
    9. Liang, Xiaopeng & Ma, Hongling & Cai, Rui & Zhao, Kai & Zeng, Zhen & Li, Hang & Yang, Chunhe, 2023. "Feasibility analysis of natural gas storage in the voids of sediment within salt cavern——A case study in China," Energy, Elsevier, vol. 285(C).
    10. Daniel Mara & Silviu Nate & Andriy Stavytskyy & Ganna Kharlamova, 2022. "The Place of Energy Security in the National Security Framework: An Assessment Approach," Energies, MDPI, vol. 15(2), pages 1-29, January.
    11. Schaber, Christopher & Mazza, Patrick & Hammerschlag, Roel, 2004. "Utility-Scale Storage of Renewable Energy," The Electricity Journal, Elsevier, vol. 17(6), pages 21-29, July.
    12. Xiaodong Guo & Chen Hao & Shuwen Niu, 2020. "Analysis of Oil Import Risk and Strategic Petroleum Reserve: The Case of China," Sustainability, MDPI, vol. 12(9), pages 1-20, May.
    13. Maciej Dutkiewicz & Ivan Shatskyi & Oleh Martsynkiv & Eduard Kuzmenko, 2022. "Mechanism of Casing String Curvature Due to Displacement of Surface Strata," Energies, MDPI, vol. 15(14), pages 1-12, July.
    14. Yang, Yang & Liu, Zhen & Saydaliev, Hayot Berk & Iqbal, Sajid, 2022. "Economic impact of crude oil supply disruption on social welfare losses and strategic petroleum reserves," Resources Policy, Elsevier, vol. 77(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Si Huang & Yinping Li & Xilin Shi & Yahua Liu & Hongling Ma & Peng Li & Yuanxi Liu & Xin Liu & Mingnan Xu & Chunhe Yang, 2024. "Key Issues of Salt Cavern Flow Battery," Energies, MDPI, vol. 17(20), pages 1-22, October.
    2. Wei, Xinxing & Shi, Xilin & Ma, Hongling & Ban, Shengnan & Bai, Weizheng, 2024. "Experimental investigation on the oil extraction process for a novel underground oil storage method: Oil storage in salt cavern insoluble sediment voids," Energy, Elsevier, vol. 309(C).
    3. Chen, Hao & Zhang, Wenfeng & Huang, Xiangting & Wang, Xin, 2024. "Estimating the dynamic economic impacts of oil supply disruptions on China: A case study of Malacca Strait block," Resources Policy, Elsevier, vol. 98(C).
    4. Michał Bembenek & Volodymyr Kotsyubynsky & Volodymyra Boychuk & Bogdan Rachiy & Ivan Budzulyak & Łukasz Kowalski & Liubomyr Ropyak, 2022. "Effect of Synthesis Conditions on Capacitive Properties of Porous Carbon Derived from Hemp Bast Fiber," Energies, MDPI, vol. 15(22), pages 1-15, November.
    5. Xu, Jin & Liu, Chengjun & Dou, Gang & Cai, Yunfei, 2024. "Mineral resource management in Chinese rural areas: Policy assessment for green economic growth," Resources Policy, Elsevier, vol. 90(C).
    6. Cen, Xiao & Chen, Zengliang & Chen, Haifeng & Ding, Chen & Ding, Bo & Li, Fei & Lou, Fangwei & Zhu, Zhenyu & Zhang, Hongyu & Hong, Bingyuan, 2024. "User repurchase behavior prediction for integrated energy supply stations based on the user profiling method," Energy, Elsevier, vol. 286(C).
    7. Zheng, Xiaotian & Zhou, Youcheng & Iqbal, Sajid, 2022. "Working capital management of SMEs in COVID-19: role of managerial personality traits and overconfidence behavior," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 439-451.
    8. Huafang, Huang, 2024. "Efficiency in the markets for natural resources as a force for economic revolution," Resources Policy, Elsevier, vol. 89(C).
    9. Livia Pitorac & Kaspar Vereide & Leif Lia, 2020. "Technical Review of Existing Norwegian Pumped Storage Plants," Energies, MDPI, vol. 13(18), pages 1-20, September.
    10. Ewelina Włodarczyk & Joanna Herczakowska, 2025. "Social Dimension of Poland’s Sustainable Energy Transition as Assessed by Residents of the Silesian Region," Sustainability, MDPI, vol. 17(6), pages 1-24, March.
    11. Anatolii Nikitin & Oleksandr Tarasenko & Oleksandr Dubenko, 2022. "Legal And Economic Foundations Of The National Security Of Ukraine: State And Prospects," Baltic Journal of Economic Studies, Publishing house "Baltija Publishing", vol. 8(3).
    12. Abdulrasheed Zakari & Jurij Toplak & Luka Martin Tomažič, 2022. "Exploring the Relationship between Energy and Food Security in Africa with Instrumental Variables Analysis," Energies, MDPI, vol. 15(15), pages 1-14, July.
    13. Mohsin, Muhammad & Jamaani, Fouad, 2023. "A novel deep-learning technique for forecasting oil price volatility using historical prices of five precious metals in context of green financing – A comparison of deep learning, machine learning, an," Resources Policy, Elsevier, vol. 86(PA).
    14. Wei, Xinxing & Shi, Xilin & Li, Yinping & Li, Peng & Ban, Shengnan & Zhao, Kai & Ma, Hongling & Liu, Hejuan & Yang, Chunhe, 2023. "A comprehensive feasibility evaluation of salt cavern oil energy storage system in China," Applied Energy, Elsevier, vol. 351(C).
    15. Svetlana Revinova & Inna Lazanyuk & Bella Gabrielyan & Tatevik Shahinyan & Yevgenya Hakobyan, 2024. "Hydrogen in Energy Transition: The Problem of Economic Efficiency, Environmental Safety, and Technological Readiness of Transportation and Storage," Resources, MDPI, vol. 13(7), pages 1-24, July.
    16. Yang, Weixin & Pan, Lingying & Ding, Qinyi, 2023. "Dynamic analysis of natural gas substitution for crude oil: Scenario simulation and quantitative evaluation," Energy, Elsevier, vol. 282(C).
    17. Adam Zając & Rafał Balina & Dariusz Kowalski, 2023. "Financial and Economic Stability of Energy Sector Enterprises as a Condition for Poland’s Energy Security—Legal and Economic Aspects," Energies, MDPI, vol. 16(3), pages 1-12, February.
    18. Xue, Tianfu & Shi, Xilin & Wang, Guibin & Liu, Xin & Wei, Xinxing & Ding, Shuanglong & Fu, Xinghui, 2024. "Study on repairing technical parameters of irregular gas storage salt caverns," Energy, Elsevier, vol. 293(C).
    19. Maciej Dutkiewicz & Ivan Shatskyi & Oleh Martsynkiv & Eduard Kuzmenko, 2022. "Mechanism of Casing String Curvature Due to Displacement of Surface Strata," Energies, MDPI, vol. 15(14), pages 1-12, July.
    20. Xiaoyi Liu & Yashuai Huang & Xilin Shi & Weizheng Bai & Si Huang & Peng Li & Mingnan Xu & Yinping Li, 2025. "Offshore Wind Power—Seawater Electrolysis—Salt Cavern Hydrogen Storage Coupling System: Potential and Challenges," Energies, MDPI, vol. 18(1), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:360-:d:1568076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.