IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7825-d1289657.html
   My bibliography  Save this article

Study of Impact of Sediment on the Stability of Salt Cavern Underground Gas Storage

Author

Listed:
  • Xiaopeng Liang

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Hongling Ma

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Rui Cai

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Kai Zhao

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xuan Wang

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Zhuyan Zheng

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xilin Shi

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Chunhe Yang

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

The utilization of sediment voids for natural gas storage represents the future direction of salt cavern underground gas storage (UGS) in China. In this study, we first analyzed the way in which the sediment interacts with the salt caverns and the equilibrium state of the process. Subsequently, a novel approach employing the Discrete Element Method (DEM) for simulating sediment-filled salt cavern UGS was introduced, successfully modeling the operational process of sediment-filled salt cavern UGS. Moreover, deformation, plastic zone behavior, effective volume shrinkage rate, equivalent strain, and safety factor were employed to assess the impact of sediment on salt cavern stability. The findings indicate a positive influence of sediment on salt cavern stability, particularly in regions directly contacting the sediment. Deformation and effective volume shrinkage of the cavern were effectively mitigated, significantly improving the stress state of rock salt. This effect is more pronounced at lower internal gas pressures. In summary, sediment enhances the stability of salt caverns, providing a long-term and stable environment for natural gas storage within sediment voids.

Suggested Citation

  • Xiaopeng Liang & Hongling Ma & Rui Cai & Kai Zhao & Xuan Wang & Zhuyan Zheng & Xilin Shi & Chunhe Yang, 2023. "Study of Impact of Sediment on the Stability of Salt Cavern Underground Gas Storage," Energies, MDPI, vol. 16(23), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7825-:d:1289657
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7825/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7825/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soubeyran, A. & Rouabhi, A. & Coquelet, C., 2019. "Thermodynamic analysis of carbon dioxide storage in salt caverns to improve the Power-to-Gas process," Applied Energy, Elsevier, vol. 242(C), pages 1090-1107.
    2. Li, Jinlong & Tang, Yao & Shi, Xilin & Xu, Wenjie & Yang, Chunhe, 2019. "Modeling the construction of energy storage salt caverns in bedded salt," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jinlong & Zhang, Ning & Xu, Wenjie & Naumov, Dmitri & Fischer, Thomas & Chen, Yunmin & Zhuang, Duanyang & Nagel, Thomas, 2022. "The influence of cavern length on deformation and barrier integrity around horizontal energy storage salt caverns," Energy, Elsevier, vol. 244(PB).
    2. Li, Jinlong & Shi, Xilin & Zhang, Shuai, 2020. "Construction modeling and parameter optimization of multi-step horizontal energy storage salt caverns," Energy, Elsevier, vol. 203(C).
    3. Jinlong, Li & Wenjie, Xu & Jianjing, Zheng & Wei, Liu & Xilin, Shi & Chunhe, Yang, 2020. "Modeling the mining of energy storage salt caverns using a structural dynamic mesh," Energy, Elsevier, vol. 193(C).
    4. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    5. Jian Wang & Peng Li & Weizheng Bai & Jun Lu & Xinghui Fu & Yaping Fu & Xilin Shi, 2024. "Mechanical Behavior of Sediment-Type High-Impurity Salt Cavern Gas Storage during Long-Term Operation," Energies, MDPI, vol. 17(16), pages 1-14, August.
    6. Yi Zhang & Wenjing Li & Guodong Chen, 2022. "A Thermodynamic Model for Carbon Dioxide Storage in Underground Salt Caverns," Energies, MDPI, vol. 15(12), pages 1-20, June.
    7. Wei, Xinxing & Shi, Xilin & Li, Yinping & Li, Peng & Ban, Shengnan & Zhao, Kai & Ma, Hongling & Liu, Hejuan & Yang, Chunhe, 2023. "A comprehensive feasibility evaluation of salt cavern oil energy storage system in China," Applied Energy, Elsevier, vol. 351(C).
    8. Lyu, Cheng & Dai, Hangyu & Ma, Chao & Zhou, Ping & Zhao, Chengxing & Xu, Deng & Zhang, Liangquan & Liang, Chao, 2024. "Prediction model for three-dimensional surface subsidence of salt cavern storage with different shapes," Energy, Elsevier, vol. 297(C).
    9. Wang, Junbao & Wang, Xiaopeng & Zhang, Qiang & Song, Zhanping & Zhang, Yuwei, 2021. "Dynamic prediction model for surface settlement of horizontal salt rock energy storage," Energy, Elsevier, vol. 235(C).
    10. Iulian Vlăducă, 2022. "Hydrogen Storage in Offshore Salt Caverns for Reducing Ships Carbon Dioxide Footprint," Technium, Technium Science, vol. 4(1), pages 1-11.
    11. Xue, Tianfu & Shi, Xilin & Wang, Guibin & Liu, Xin & Wei, Xinxing & Ding, Shuanglong & Fu, Xinghui, 2024. "Study on repairing technical parameters of irregular gas storage salt caverns," Energy, Elsevier, vol. 293(C).
    12. Habibi, Rahim & Zare, Shokrollah & Asgari, Amin & Singh, Mrityunjay & Mahmoodpour, Saeed, 2023. "Coupled thermo-hydro-mechanical-chemical processes in salt formations for storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. Liang, Xiaopeng & Ma, Hongling & Cai, Rui & Zhao, Kai & Zeng, Zhen & Li, Hang & Yang, Chunhe, 2023. "Feasibility analysis of natural gas storage in the voids of sediment within salt cavern——A case study in China," Energy, Elsevier, vol. 285(C).
    14. Li, Wenjing & Miao, Xiuxiu & Wang, Jianfu & Li, Xiaozhao, 2023. "Study on thermodynamic behaviour of natural gas and thermo-mechanical response of salt caverns for underground gas storage," Energy, Elsevier, vol. 262(PB).
    15. Li, Hang & Ma, Hongling & Liu, Jiang & Zhu, Shijie & Zhao, Kai & Zheng, Zhuyan & Zeng, Zhen & Yang, Chunhe, 2023. "Large-scale CAES in bedded rock salt: A case study in Jiangsu Province, China," Energy, Elsevier, vol. 281(C).
    16. Zhang, Xiong & Liu, Wei & Jiang, Deyi & Qiao, Weibiao & Liu, Enbin & Zhang, Nan & Fan, Jinyang, 2021. "Investigation on the influences of interlayer contents on stability and usability of energy storage caverns in bedded rock salt," Energy, Elsevier, vol. 231(C).
    17. Liu, Xin & Shi, Xilin & Li, Yinping & Ye, Liangliang & Wei, Xinxing & Zhu, Shijie & Bai, Weizheng & Ma, Hongling & Yang, Chunhe, 2023. "Synthetic salt rock prepared by molten salt crystallization and its physical and mechanical properties," Energy, Elsevier, vol. 269(C).
    18. Ling, Daosheng & Zhu, Song & Zheng, Jianjing & Xu, Zijun & Zhao, Yunsong & Chen, Liuping & Shi, Xilin & Li, Jinlong, 2023. "A simulation method for the dissolution construction of salt cavern energy storage with the interface angle considered," Energy, Elsevier, vol. 263(PB).
    19. Li, Jinlong & Wang, ZhuoTeng & Zhang, Shuai & Shi, Xilin & Xu, Wenjie & Zhuang, Duanyang & Liu, Jia & Li, Qingdong & Chen, Yunmin, 2022. "Machine-learning-based capacity prediction and construction parameter optimization for energy storage salt caverns," Energy, Elsevier, vol. 254(PA).
    20. Sun, Fengrui & Liu, Dameng & Cai, Yidong & Qiu, Yongkai, 2023. "Surface jump mechanism of gas molecules in strong adsorption field of coalbed methane reservoirs," Applied Energy, Elsevier, vol. 349(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7825-:d:1289657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.