IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3390-d379246.html
   My bibliography  Save this article

Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review

Author

Listed:
  • Vasiliki Tzelepi

    (Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, 52 Egialias str., 15125 Athens, Greece)

  • Myrto Zeneli

    (Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, 52 Egialias str., 15125 Athens, Greece)

  • Dimitrios-Sotirios Kourkoumpas

    (Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, 52 Egialias str., 15125 Athens, Greece)

  • Emmanouil Karampinis

    (Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, 52 Egialias str., 15125 Athens, Greece)

  • Antonios Gypakis

    (General Secretariat for Research and Technology, 14–18 Messogion Ave., 11527 Athens, Greece)

  • Nikos Nikolopoulos

    (Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, 52 Egialias str., 15125 Athens, Greece)

  • Panagiotis Grammelis

    (Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, 52 Egialias str., 15125 Athens, Greece)

Abstract

Biomass has been demonstrated as a capable source of energy to fulfill the increasing demand for clean energy sources which could last a long time. Replacing fossil fuels with biomass-based ones can potentially lead to a reduction of carbon emissions, which is the main target of the EU climate strategy. Based on RED II (revised Renewable Energy Directive 2018/2001/EU) and the European Green Deal, biomass is a promising energy source for achieving carbon neutrality in the future. However, the sustainable potential of biomass resources in the forthcoming decades is still a matter of question. This review aims at estimating the availability of biomass for energy reasons in the EU, and to evaluate its potential to meet the coal power plant capacity of the main lignite-producer countries, including Germany, Poland and Greece. Plants in line with the sustainability criteria of RED II have been selected for the preliminary estimations concerning their full conversion to the biomass power concept. Furthermore, the various barriers to biomass utilization are highlighted, such as the stranded asset risk of a future coal phase-out scenario, biomass supply chain challenges, biomass availability in main lignite-producer EU countries, the existing full conversion technologies, and biomass cost. A variety of challenges in the scenario of lignite substitution with biomass in a plant are investigated in a SWOT (strengths, weaknesses, opportunities, and threats) analysis. Technological risks and issues should be tackled in order to achieve the coal phase-out EU goal, mainly with regard to the supply chain of biomass. In this direction, the development of logistics centers for the centralized handling of biomass is strongly recommended.

Suggested Citation

  • Vasiliki Tzelepi & Myrto Zeneli & Dimitrios-Sotirios Kourkoumpas & Emmanouil Karampinis & Antonios Gypakis & Nikos Nikolopoulos & Panagiotis Grammelis, 2020. "Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review," Energies, MDPI, vol. 13(13), pages 1-26, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3390-:d:379246
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3390/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3390/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
    2. Christophe McGlade & Paul Ekins, 2015. "The geographical distribution of fossil fuels unused when limiting global warming to 2 °C," Nature, Nature, vol. 517(7533), pages 187-190, January.
    3. Weiser, Christian & Zeller, Vanessa & Reinicke, Frank & Wagner, Bernhard & Majer, Stefan & Vetter, Armin & Thraen, Daniela, 2014. "Integrated assessment of sustainable cereal straw potential and different straw-based energy applications in Germany," Applied Energy, Elsevier, vol. 114(C), pages 749-762.
    4. Rentizelas, Athanasios A. & Tolis, Athanasios J. & Tatsiopoulos, Ilias P., 2009. "Logistics issues of biomass: The storage problem and the multi-biomass supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 887-894, May.
    5. Erb, Karl-Heinz & Krausmann, Fridolin & Lucht, Wolfgang & Haberl, Helmut, 2009. "Embodied HANPP: Mapping the spatial disconnect between global biomass production and consumption," Ecological Economics, Elsevier, vol. 69(2), pages 328-334, December.
    6. Roni, Mohammad S. & Chowdhury, Sudipta & Mamun, Saleh & Marufuzzaman, Mohammad & Lein, William & Johnson, Samuel, 2017. "Biomass co-firing technology with policies, challenges, and opportunities: A global review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1089-1101.
    7. Kavouridis, Konstantinos, 2008. "Lignite industry in Greece within a world context: Mining, energy supply and environment," Energy Policy, Elsevier, vol. 36(4), pages 1257-1272, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aravani, Vasiliki P. & Sun, Hangyu & Yang, Ziyi & Liu, Guangqing & Wang, Wen & Anagnostopoulos, George & Syriopoulos, George & Charisiou, Nikolaos D. & Goula, Maria A. & Kornaros, Michael & Papadakis,, 2022. "Agricultural and livestock sector's residues in Greece & China: Comparative qualitative and quantitative characterization for assessing their potential for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Alessandro A. Carmona-Martínez & Anatoli Rontogianni & Myrto Zeneli & Panagiotis Grammelis & Olgu Birgi & Rainer Janssen & Benedetta Di Costanzo & Martijn Vis & Bas Davidis & Patrick Reumerman & Asier, 2024. "Charting the Course: Navigating Decarbonisation Pathways in Greece, Germany, The Netherlands, and Spain’s Industrial Sectors," Sustainability, MDPI, vol. 16(14), pages 1-26, July.
    3. Muhammad Yousaf Arshad & Muhammad Azam Saeed & Muhammad Wasim Tahir & Ahsan Raza & Anam Suhail Ahmad & Fasiha Tahir & Bartłomiej Borkowski & Tadeusz Mączka & Lukasz Niedzwiecki, 2023. "Role of Experimental, Modeling, and Simulation Studies of Plasma in Sustainable Green Energy," Sustainability, MDPI, vol. 15(19), pages 1-35, September.
    4. Leanda C. Garvie & David J. Lee & Biljana Kulišić, 2024. "Towards a Bioeconomy: Supplying Forest Residues for the Australian Market," Energies, MDPI, vol. 17(2), pages 1-19, January.
    5. Ewelina Olba-Zięty & Jakub Jan Zięty & Mariusz Jerzy Stolarski, 2023. "External Environmental Costs of Solid Biomass Production against the Legal and Political Background in Europe," Energies, MDPI, vol. 16(10), pages 1-27, May.
    6. Chrysoula Pagouni & Francis Pavloudakis & Ioannis Kapageridis & Athena Yiannakou, 2024. "Transitional and Post-Mining Land Uses: A Global Review of Regulatory Frameworks, Decision-Making Criteria, and Methods," Land, MDPI, vol. 13(7), pages 1-27, July.
    7. Mateusz Jackowski & Łukasz Niedźwiecki & Krzysztof Mościcki & Amit Arora & Muhammad Azam Saeed & Krystian Krochmalny & Jakub Pawliczek & Anna Trusek & Magdalena Lech & Jan Skřínský & Jakub Čespiva & J, 2021. "Synergetic Co-Production of Beer Colouring Agent and Solid Fuel from Brewers’ Spent Grain in the Circular Economy Perspective," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    8. Andrzej Rostocki & Dorota Wieczorek & Paulina Pipiak & Katarzyna Ławińska, 2024. "Use of Biostimulants in Energy Crops as a New Approach for the Improvement of Performance Sequestration CO 2," Energies, MDPI, vol. 17(12), pages 1-23, June.
    9. Szturgulewski, Kacper & Głuch, Jerzy & Drosińska-Komor, Marta & Ziółkowski, Paweł & Gardzilewicz, Andrzej & Brzezińska-Gołębiewska, Katarzyna, 2024. "Hybrid geothermal-fossil power cycle analysis in a Polish setting with a focus on off-design performance and CO2 emissions reductions," Energy, Elsevier, vol. 299(C).
    10. Gilbert Ahamer, 2022. "Why Biomass Fuels Are Principally Not Carbon Neutral," Energies, MDPI, vol. 15(24), pages 1-39, December.
    11. Marek Wieruszewski & Katarzyna Mydlarz, 2022. "The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources," Energies, MDPI, vol. 15(24), pages 1-23, December.
    12. Tadeáš Ochodek & Emmanouil Karampinis & Artur Pozarlik, 2022. "Contemporary Problems in Combustion—Fuels, Their Valorisation, Emissions, Flexibility and Auxiliary Systems," Energies, MDPI, vol. 15(5), pages 1-4, February.
    13. Gioele Di Marcoberardino & Costante Mario Invernizzi & Paolo Iora & Luca Arosio & Marcello Canavese & Angelo Lunghi & Antonella Mazzei, 2022. "Thermal Stability and Thermodynamic Performances of Pure Siloxanes and Their Mixtures in Organic Rankine Cycles," Energies, MDPI, vol. 15(10), pages 1-20, May.
    14. Qiang Wang & Thomas Dogot & Yueling Yang & Jian Jiao & Boyang Shi & Changbin Yin, 2020. "From “Coal to Gas” to “Coal to Biomass”: The Strategic Choice of Social Capital in China," Energies, MDPI, vol. 13(16), pages 1-22, August.
    15. Staffan Qvist & Paweł Gładysz & Łukasz Bartela & Anna Sowiżdżał, 2020. "Retrofit Decarbonization of Coal Power Plants—A Case Study for Poland," Energies, MDPI, vol. 14(1), pages 1-37, December.
    16. Lenka Štofová & Petra Szaryszová & Bohuslava Mihalčová, 2021. "Testing the Bioeconomic Options of Transitioning to Solid Recovered Fuel: A Case Study of a Thermal Power Plant in Slovakia," Energies, MDPI, vol. 14(6), pages 1-20, March.
    17. Tomasz Hardy & Amit Arora & Halina Pawlak-Kruczek & Wojciech Rafajłowicz & Jerzy Wietrzych & Łukasz Niedźwiecki & Vishwajeet & Krzysztof Mościcki, 2021. "Non-Destructive Diagnostic Methods for Fire-Side Corrosion Risk Assessment of Industrial Scale Boilers, Burning Low Quality Solid Biofuels—A Mini Review," Energies, MDPI, vol. 14(21), pages 1-15, November.
    18. Grzegorz Pełka & Marta Jach-Nocoń & Marcin Paprocki & Artur Jachimowski & Wojciech Luboń & Adam Nocoń & Mateusz Wygoda & Paweł Wyczesany & Przemysław Pachytel & Tomasz Mirowski, 2023. "Comparison of Emissions and Efficiency of Two Types of Burners When Burning Wood Pellets from Different Suppliers," Energies, MDPI, vol. 16(4), pages 1-18, February.
    19. Timur Kogabayev & Anne Põder & Henrik Barth & Rando Värnik, 2023. "Prospects for Wood Pellet Production in Kazakhstan: A Case Study on Business Model Adjustment," Energies, MDPI, vol. 16(15), pages 1-20, August.
    20. Nikolaos Apostolopoulos & Alexandros Kakouris & Panagiotis Liargovas & Petar Borisov & Teodor Radev & Sotiris Apostolopoulos & Sofia Daskou & Eleni Ε. Anastasopoulou, 2023. "Just Transition Policies, Power Plant Workers and Green Entrepreneurs in Greece, Cyprus and Bulgaria: Can Education and Retraining Meet the Challenge?," Sustainability, MDPI, vol. 15(23), pages 1-21, November.
    21. Tomasz Noszczyk & Arkadiusz Dyjakon & Jacek A. Koziel, 2021. "Kinetic Parameters of Nut Shells Pyrolysis," Energies, MDPI, vol. 14(3), pages 1-22, January.
    22. Ziółkowski, Paweł & Badur, Janusz & Pawlak- Kruczek, Halina & Stasiak, Kamil & Amiri, Milad & Niedzwiecki, Lukasz & Krochmalny, Krystian & Mularski, Jakub & Madejski, Paweł & Mikielewicz, Dariusz, 2022. "Mathematical modelling of gasification process of sewage sludge in reactor of negative CO2 emission power plant," Energy, Elsevier, vol. 244(PA).
    23. Efthimios Zervas & Leonidas Vatikiotis & Zoe Gareiou & Stella Manika & Ruth Herrero-Martin, 2021. "Assessment of the Greek National Plan of Energy and Climate Change—Critical Remarks," Sustainability, MDPI, vol. 13(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zahraee, Seyed Mojib & Rahimpour Golroudbary, Saeed & Shiwakoti, Nirajan & Stasinopoulos, Peter, 2021. "Particle-Gaseous pollutant emissions and cost of global biomass supply chain via maritime transportation: Full-scale synergy model," Applied Energy, Elsevier, vol. 303(C).
    2. Joaquín Bernal-Ramírez & Jair Ojeda-Joya & Camila Agudelo-Rivera & Felipe Clavijo-Ramírez & Carolina Durana-Ángel & Clark Granger-Castaño & Daniel Osorio-Rodríguez & Daniel Parra-Amado & José Pulido &, 2022. "Impacto macroeconómico del cambio climático en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 102, pages 1-62, July.
    3. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    4. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    5. Weth, Mark A. & Baltzer, Markus & Bertram, Christoph & Hilaire, Jérôme & Johnston, Craig, 2024. "The scenario-based equity price impact induced by greenhouse gas emissions," Discussion Papers 30/2024, Deutsche Bundesbank.
    6. Dan Liu & Da Teng & Yan Zhu & Xingde Wang & Hanyang Wang, 2023. "Optimization of Process Parameters for Pellet Production from Corn Stalk Rinds Using Box–Behnken Design," Energies, MDPI, vol. 16(12), pages 1-20, June.
    7. Kastner, Thomas & Kastner, Michael & Nonhebel, Sanderine, 2011. "Tracing distant environmental impacts of agricultural products from a consumer perspective," Ecological Economics, Elsevier, vol. 70(6), pages 1032-1040, April.
    8. Waldemar Karpa & Antonio Grginović, 2021. "(Not So) Stranded: The Case of Coal in Poland," Energies, MDPI, vol. 14(24), pages 1-16, December.
    9. Olatz Azurza-Zubizarreta & Izaro Basurko-PerezdeArenaza & Eñaut Zelarain & Estitxu Villamor & Ortzi Akizu-Gardoki & Unai Villena-Camarero & Alvaro Campos-Celador & Iñaki Barcena-Hinojal, 2021. "Urban Energy Transitions in Europe, towards Low-Socio-Environmental Impact Cities," Sustainability, MDPI, vol. 13(21), pages 1-29, October.
    10. Thomä, Jakob & Murray, Clare & Jerosch-Herold, Vincent & Magdanz, Janina, 2019. "Do you manage what you measure? Investor views on the question of climate actions with empirical results from the Swiss pension fund and insurance sector," LSE Research Online Documents on Economics 115100, London School of Economics and Political Science, LSE Library.
    11. ASPO Italy Association for the Study of PeakOil And Gas, 2016. "Fossil Fuels, Let’s Leave Them under Earth. Four Reasons to Vote “Yes” at the Italian Referendum on Drilling," Challenges, MDPI, vol. 7(1), pages 1-4, April.
    12. Egging-Bratseth, Ruud & Holz, Franziska & Czempinski, Victoria, 2021. "Freedom gas to Europe: Scenarios analyzed using the Global Gas Model," Research in International Business and Finance, Elsevier, vol. 58(C).
    13. Bretschger, Lucas, 2021. "Getting the Costs of Environmental Protection Right: Why Climate Policy Is Inexpensive in the End," Ecological Economics, Elsevier, vol. 188(C).
    14. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    15. Agarwala, Matthew & Burke, Matt & Klusak, Patrycja & Mohaddes, Kamiar & Volz, Ulrich & Zenghelis, Dimitri, 2021. "Climate Change And Fiscal Sustainability: Risks And Opportunities," National Institute Economic Review, National Institute of Economic and Social Research, vol. 258, pages 28-46, November.
    16. Yusifzada, Tural, 2022. "Response of Inflation to the Climate Stress: Evidence from Azerbaijan," MPRA Paper 116522, University Library of Munich, Germany, revised 20 Sep 2022.
    17. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    18. Nieto, Jaime & Carpintero, Óscar & Miguel, Luis J. & de Blas, Ignacio, 2020. "Macroeconomic modelling under energy constraints: Global low carbon transition scenarios," Energy Policy, Elsevier, vol. 137(C).
    19. Gustav Engström & Johan Gars, 2016. "Climatic Tipping Points and Optimal Fossil-Fuel Use," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 541-571, November.
    20. Kim, Yeon-Su & Rodrigues, Marcos & Robinne, François-Nicolas, 2021. "Economic drivers of global fire activity: A critical review using the DPSIR framework," Forest Policy and Economics, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3390-:d:379246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.