IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223034734.html
   My bibliography  Save this article

Experimental and molecular dynamics studies on the multiscale permeability properties of various gases in salt rock

Author

Listed:
  • Xie, Lingzhi
  • Yuan, Ziran
  • He, Bo
  • Wang, Runxi

Abstract

To respond to the challenges posed by the intermittent nature of renewable energy sources, salt caverns are considered as ideal storage sites for energy such as hydrogen, compressed air, etc., as well as various other gases such as methane, helium, CO2, etc., due to their unique properties. However, the microfractures of salt rock are characterized by multiscale features and the microscopic flow properties of different gases in them are not yet clear. Here, we combine experiments and molecular dynamics simulations to investigate the multiscale flow of the above gases in salt rocks. First, the permeability of six gases has been evaluated to elucidate the microscopic mechanisms underlying the Klinkenberg effect. Second, based on the adsorption and flow characteristics of the gas, a multiscale permeability curve (ranging from 10−9∼10−3 m) was obtained for the salt rock slit. Furthermore, a fast method for predicting the permeability of salt rock samples was proposed, with predictions in the same order of magnitude as the experimental results. Finally, the storage requirements for different gases in salt caverns were discussed. This work provides multiscale insights into gas storage in salt caverns, which can guide the construction of salt cavern gas storage reservoirs and the assessment of leakage risk.

Suggested Citation

  • Xie, Lingzhi & Yuan, Ziran & He, Bo & Wang, Runxi, 2024. "Experimental and molecular dynamics studies on the multiscale permeability properties of various gases in salt rock," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034734
    DOI: 10.1016/j.energy.2023.130079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034734
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Guodong & Wang, Yi & Rui, Zhenhua & Chen, Bailian & Ren, Shaoran & Zhang, Liang, 2018. "Assessing the combined influence of fluid-rock interactions on reservoir properties and injectivity during CO2 storage in saline aquifers," Energy, Elsevier, vol. 155(C), pages 281-296.
    2. Wei, Liu & Jie, Chen & Deyi, Jiang & Xilin, Shi & Yinping, Li & Daemen, J.J.K. & Chunhe, Yang, 2016. "Tightness and suitability evaluation of abandoned salt caverns served as hydrocarbon energies storage under adverse geological conditions (AGC)," Applied Energy, Elsevier, vol. 178(C), pages 703-720.
    3. Wei, Xinxing & Ban, Shengnan & Shi, Xilin & Li, Peng & Li, Yinping & Zhu, Shijie & Yang, Kun & Bai, Weizheng & Yang, Chunhe, 2023. "Carbon and energy storage in salt caverns under the background of carbon neutralization in China," Energy, Elsevier, vol. 272(C).
    4. Ju, Yang & He, Jian & Chang, Elliot & Zheng, Liange, 2019. "Quantification of CH4 adsorption capacity in kerogen-rich reservoir shales: An experimental investigation and molecular dynamic simulation," Energy, Elsevier, vol. 170(C), pages 411-422.
    5. Li, Hang & Ma, Hongling & Liu, Jiang & Zhu, Shijie & Zhao, Kai & Zheng, Zhuyan & Zeng, Zhen & Yang, Chunhe, 2023. "Large-scale CAES in bedded rock salt: A case study in Jiangsu Province, China," Energy, Elsevier, vol. 281(C).
    6. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    7. Zhang, Nan & Shi, Xilin & Wang, Tongtao & Yang, Chunhe & Liu, Wei & Ma, Hongling & Daemen, J.J.K., 2017. "Stability and availability evaluation of underground strategic petroleum reserve (SPR) caverns in bedded rock salt of Jintan, China," Energy, Elsevier, vol. 134(C), pages 504-514.
    8. Apostolou, Dimitrios & Enevoldsen, Peter, 2019. "The past, present and potential of hydrogen as a multifunctional storage application for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 917-929.
    9. Shan, Baochao & Wang, Runxi & Guo, Zhaoli & Wang, Peng, 2021. "Contribution quantification of nanoscale gas transport in shale based on strongly inhomogeneous kinetic model," Energy, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Shijie & Shi, Xilin & Yang, Chunhe & Li, Yinping & Li, Hang & Yang, Kun & Wei, Xinxing & Bai, Weizheng & Liu, Xin, 2023. "Hydrogen loss of salt cavern hydrogen storage," Renewable Energy, Elsevier, vol. 218(C).
    2. Wei, Xinxing & Shi, Xilin & Li, Yinping & Li, Peng & Ban, Shengnan & Zhao, Kai & Ma, Hongling & Liu, Hejuan & Yang, Chunhe, 2023. "A comprehensive feasibility evaluation of salt cavern oil energy storage system in China," Applied Energy, Elsevier, vol. 351(C).
    3. Zhang, Xiong & Liu, Wei & Chen, Jie & Jiang, Deyi & Fan, Jinyang & Daemen, J.J.K. & Qiao, Weibiao, 2022. "Large-scale CO2 disposal/storage in bedded rock salt caverns of China: An evaluation of safety and suitability," Energy, Elsevier, vol. 249(C).
    4. Nan Zhang & Wei Liu & Yun Zhang & Pengfei Shan & Xilin Shi, 2020. "Microscopic Pore Structure of Surrounding Rock for Underground Strategic Petroleum Reserve (SPR) Caverns in Bedded Rock Salt," Energies, MDPI, vol. 13(7), pages 1-22, March.
    5. Bai, Weizheng & Shi, Xilin & Yang, Chunhe & Zhu, Shijie & Wei, Xinxing & Li, Yinping & Liu, Xin, 2024. "Assessment of the potential of salt mines for renewable energy peaking in China," Energy, Elsevier, vol. 300(C).
    6. Bohang Liu & Lei Wang & Yintong Guo & Jing Li & Hanzhi Yang, 2022. "Experimental Investigation on the Evolution of Tensile Mechanical Behavior of Cement Stone Considering the Variation of Burial Depth," Energies, MDPI, vol. 15(19), pages 1-16, October.
    7. Lei Wang & Bohang Liu & Hanzhi Yang & Yintong Guo & Jing Li & Hejuan Liu, 2022. "Experimental Study on the Compressive and Shear Mechanical Properties of Cement–Formation Interface Considering Surface Roughness and Drilling Mud Contamination," Energies, MDPI, vol. 15(17), pages 1-17, September.
    8. Li, Hang & Ma, Hongling & Zhao, Kai & Zhu, Shijie & Yang, Kun & Zeng, Zhen & Zheng, Zhuyan & Yang, Chunhe, 2024. "Parameter design of the compressed air energy storage salt cavern in highly impure rock salt formations," Energy, Elsevier, vol. 286(C).
    9. Wei, Xinxing & Shi, Xilin & Li, Yinping & Liu, Hejuan & Li, Peng & Ban, Shengnan & Liang, Xiaopeng & Zhu, Shijie & Zhao, Kai & Yang, Kun & Huang, Si & Yang, Chunhe, 2023. "Advances in research on gas storage in sediment void of salt cavern in China," Energy, Elsevier, vol. 284(C).
    10. Jingcui Li & Jifang Wan & Hangming Liu & Maria Jose Jurado & Yuxian He & Guangjie Yuan & Yan Xia, 2022. "Stability Analysis of a Typical Salt Cavern Gas Storage in the Jintan Area of China," Energies, MDPI, vol. 15(11), pages 1-15, June.
    11. Wang, Junbao & Wang, Xiaopeng & Zhang, Qiang & Song, Zhanping & Zhang, Yuwei, 2021. "Dynamic prediction model for surface settlement of horizontal salt rock energy storage," Energy, Elsevier, vol. 235(C).
    12. Wang, Xuan & Ma, Hongling & Li, Hang & Zeng, Zhen & Liang, Xiaopeng & Yang, Chunhe, 2024. "Projected effective energy stored of Zhangshu salt cavern per day in CAES in 2060," Energy, Elsevier, vol. 299(C).
    13. Cen, Xiao & Chen, Zengliang & Chen, Haifeng & Ding, Chen & Ding, Bo & Li, Fei & Lou, Fangwei & Zhu, Zhenyu & Zhang, Hongyu & Hong, Bingyuan, 2024. "User repurchase behavior prediction for integrated energy supply stations based on the user profiling method," Energy, Elsevier, vol. 286(C).
    14. Mahmoodpour, Saeed & Amooie, Mohammad Amin & Rostami, Behzad & Bahrami, Flora, 2020. "Effect of gas impurity on the convective dissolution of CO2 in porous media," Energy, Elsevier, vol. 199(C).
    15. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    16. Yang, Xue & Chen, Zeqin & Liu, Xiaoqiang & Xue, Zhiyu & Yue, Fen & Wen, Junjie & Li, Meijun & Xue, Ying, 2022. "Correction of gas adsorption capacity in quartz nanoslit and its application in recovering shale gas resources by CO2 injection: A molecular simulation," Energy, Elsevier, vol. 240(C).
    17. Chen, Bailian & Pawar, Rajesh J., 2019. "Characterization of CO2 storage and enhanced oil recovery in residual oil zones," Energy, Elsevier, vol. 183(C), pages 291-304.
    18. Zhang, Xiaogang & Ranjith, P.G. & Ranathunga, A.S., 2019. "Sub- and super-critical carbon dioxide flow variations in large high-rank coal specimen: An experimental study," Energy, Elsevier, vol. 181(C), pages 148-161.
    19. Xue, Tianfu & Shi, Xilin & Wang, Guibin & Liu, Xin & Wei, Xinxing & Ding, Shuanglong & Fu, Xinghui, 2024. "Study on repairing technical parameters of irregular gas storage salt caverns," Energy, Elsevier, vol. 293(C).
    20. Yao, Hongbo & Chen, Yuedu & Liang, Weiguo & Li, Zhigang & Song, Xiaoxia, 2023. "Experimental study on the permeability evolution of coal with CO2 phase transition," Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.