Study on thermodynamic behaviour of natural gas and thermo-mechanical response of salt caverns for underground gas storage
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.125601
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Soubeyran, A. & Rouabhi, A. & Coquelet, C., 2019. "Thermodynamic analysis of carbon dioxide storage in salt caverns to improve the Power-to-Gas process," Applied Energy, Elsevier, vol. 242(C), pages 1090-1107.
- Li, Wenjing & Nan, Xing & Chen, Jiasong & Yang, Chunhe, 2021. "Investigation of thermal-mechanical effects on salt cavern during cycling loading," Energy, Elsevier, vol. 232(C).
- Wei, Liu & Jie, Chen & Deyi, Jiang & Xilin, Shi & Yinping, Li & Daemen, J.J.K. & Chunhe, Yang, 2016. "Tightness and suitability evaluation of abandoned salt caverns served as hydrocarbon energies storage under adverse geological conditions (AGC)," Applied Energy, Elsevier, vol. 178(C), pages 703-720.
- Ma, Yan & Rao, QiuHua & Huang, Dianyi & Li, Peng & Yi, Wei & Sun, Dongliang, 2022. "A new theoretical model of thermo-gas-mechanical (TGM) coupling field for underground multi-layered cavern of compressed air energy storage," Energy, Elsevier, vol. 257(C).
- Yang, Chunhe & Wang, Tongtao & Li, Yinping & Yang, Haijun & Li, Jianjun & Qu, Dan’an & Xu, Baocai & Yang, Yun & Daemen, J.J.K., 2015. "Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China," Applied Energy, Elsevier, vol. 137(C), pages 467-481.
- Kim, Hyung-Mok & Rutqvist, Jonny & Ryu, Dong-Woo & Choi, Byung-Hee & Sunwoo, Choon & Song, Won-Kyong, 2012. "Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance," Applied Energy, Elsevier, vol. 92(C), pages 653-667.
- Liu, Xin & Shi, Xilin & Li, Yinping & Li, Peng & Zhao, Kai & Ma, Hongling & Yang, Chunhe, 2021. "Maximum gas production rate for salt cavern gas storages," Energy, Elsevier, vol. 234(C).
- Wang, Tongtao & Yan, Xiangzhen & Yang, Henglin & Yang, Xiujuan & Jiang, Tingting & Zhao, Shuai, 2013. "A new shape design method of salt cavern used as underground gas storage," Applied Energy, Elsevier, vol. 104(C), pages 50-61.
- Wu, Di & Wang, J.G. & Hu, Bowen & Yang, Sheng-Qi, 2020. "A coupled thermo-hydro-mechanical model for evaluating air leakage from an unlined compressed air energy storage cavern," Renewable Energy, Elsevier, vol. 146(C), pages 907-920.
- Fan, Jinyang & Xie, Heping & Chen, Jie & Jiang, Deyi & Li, Cunbao & Ngaha Tiedeu, William & Ambre, Julien, 2020. "Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs," Applied Energy, Elsevier, vol. 258(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wei, Xinxing & Shi, Xilin & Li, Yinping & Li, Peng & Ban, Shengnan & Zhao, Kai & Ma, Hongling & Liu, Hejuan & Yang, Chunhe, 2023. "A comprehensive feasibility evaluation of salt cavern oil energy storage system in China," Applied Energy, Elsevier, vol. 351(C).
- Long, Keji & Tang, Yong & He, Youwei & Luo, Yulong & Hong, Yinghe & Sun, Yu & Rui, Zhenhua, 2024. "Full-cycle enhancing condensate recovery-underground gas storage by integrating cyclic gas flooding and storage from gas condensate reservoirs," Energy, Elsevier, vol. 293(C).
- He, Youwei & Wang, Ning & Tang, Yong & Tang, Liangrui & He, Zhiyue & Rui, Zhenhua, 2024. "Formation-water evaporation and salt precipitation mechanism in porous media under movable water conditions in underground gas storage," Energy, Elsevier, vol. 286(C).
- Tong, Huidong & Chen, Youliang & Chen, Qijian & Du, Xi & Xiao, Peng & Wang, Suran & Dong, Yang & Pan, Yungui & Ma, Hao & Long, Zhiyu, 2023. "A true triaxial creep constitutive model of rock considering the coupled thermo-mechanical damage," Energy, Elsevier, vol. 285(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yi Zhang & Wenjing Li & Guodong Chen, 2022. "A Thermodynamic Model for Carbon Dioxide Storage in Underground Salt Caverns," Energies, MDPI, vol. 15(12), pages 1-20, June.
- Wei, Xinxing & Shi, Xilin & Li, Yinping & Li, Peng & Ban, Shengnan & Zhao, Kai & Ma, Hongling & Liu, Hejuan & Yang, Chunhe, 2023. "A comprehensive feasibility evaluation of salt cavern oil energy storage system in China," Applied Energy, Elsevier, vol. 351(C).
- Liang, Xiaopeng & Ma, Hongling & Cai, Rui & Zhao, Kai & Zeng, Zhen & Li, Hang & Yang, Chunhe, 2023. "Feasibility analysis of natural gas storage in the voids of sediment within salt cavern——A case study in China," Energy, Elsevier, vol. 285(C).
- Zhang, Xiong & Liu, Wei & Jiang, Deyi & Qiao, Weibiao & Liu, Enbin & Zhang, Nan & Fan, Jinyang, 2021. "Investigation on the influences of interlayer contents on stability and usability of energy storage caverns in bedded rock salt," Energy, Elsevier, vol. 231(C).
- Li, Jinlong & Shi, Xilin & Zhang, Shuai, 2020. "Construction modeling and parameter optimization of multi-step horizontal energy storage salt caverns," Energy, Elsevier, vol. 203(C).
- Zhu, Shijie & Shi, Xilin & Yang, Chunhe & Li, Yinping & Li, Hang & Yang, Kun & Wei, Xinxing & Bai, Weizheng & Liu, Xin, 2023. "Hydrogen loss of salt cavern hydrogen storage," Renewable Energy, Elsevier, vol. 218(C).
- Zhang, Xiong & Liu, Wei & Chen, Jie & Jiang, Deyi & Fan, Jinyang & Daemen, J.J.K. & Qiao, Weibiao, 2022. "Large-scale CO2 disposal/storage in bedded rock salt caverns of China: An evaluation of safety and suitability," Energy, Elsevier, vol. 249(C).
- Lyu, Cheng & Dai, Hangyu & Ma, Chao & Zhou, Ping & Zhao, Chengxing & Xu, Deng & Zhang, Liangquan & Liang, Chao, 2024. "Prediction model for three-dimensional surface subsidence of salt cavern storage with different shapes," Energy, Elsevier, vol. 297(C).
- Haitao Li & Jingen Deng & Qiqi Wanyan & Yongcun Feng & Arnaud Regis Kamgue Lenwoue & Chao Luo & Cheng Hui, 2021. "Numerical Investigation on Shape Optimization of Small-Spacing Twin-Well for Salt Cavern Gas Storage in Ultra-Deep Formation," Energies, MDPI, vol. 14(10), pages 1-22, May.
- Zhou, Yu & Xia, Caichu & Zhao, Haibin & Mei, Songhua & Zhou, Shuwei, 2018. "An iterative method for evaluating air leakage from unlined compressed air energy storage (CAES) caverns," Renewable Energy, Elsevier, vol. 120(C), pages 434-445.
- Xue, Tianfu & Shi, Xilin & Wang, Guibin & Liu, Xin & Wei, Xinxing & Ding, Shuanglong & Fu, Xinghui, 2024. "Study on repairing technical parameters of irregular gas storage salt caverns," Energy, Elsevier, vol. 293(C).
- Li, Hang & Ma, Hongling & Liu, Jiang & Zhu, Shijie & Zhao, Kai & Zheng, Zhuyan & Zeng, Zhen & Yang, Chunhe, 2023. "Large-scale CAES in bedded rock salt: A case study in Jiangsu Province, China," Energy, Elsevier, vol. 281(C).
- Li, Jinlong & Zhang, Ning & Xu, Wenjie & Naumov, Dmitri & Fischer, Thomas & Chen, Yunmin & Zhuang, Duanyang & Nagel, Thomas, 2022. "The influence of cavern length on deformation and barrier integrity around horizontal energy storage salt caverns," Energy, Elsevier, vol. 244(PB).
- Zhang, Nan & Shi, Xilin & Wang, Tongtao & Yang, Chunhe & Liu, Wei & Ma, Hongling & Daemen, J.J.K., 2017. "Stability and availability evaluation of underground strategic petroleum reserve (SPR) caverns in bedded rock salt of Jintan, China," Energy, Elsevier, vol. 134(C), pages 504-514.
- Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
- Lankof, Leszek & Urbańczyk, Kazimierz & Tarkowski, Radosław, 2022. "Assessment of the potential for underground hydrogen storage in salt domes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Li, Hang & Ma, Hongling & Zhao, Kai & Zhu, Shijie & Yang, Kun & Zeng, Zhen & Zheng, Zhuyan & Yang, Chunhe, 2024. "Parameter design of the compressed air energy storage salt cavern in highly impure rock salt formations," Energy, Elsevier, vol. 286(C).
- He, Tao & Wang, Tongtao & Wang, Duocai & Xie, Dongzhou & Dong, Zhikai & Zhang, Hong & Ma, Tieliang & Daemen, J.J.K., 2023. "Integrity analysis of wellbores in the bedded salt cavern for energy storage," Energy, Elsevier, vol. 263(PB).
- Nan Zhang & Wei Liu & Yun Zhang & Pengfei Shan & Xilin Shi, 2020. "Microscopic Pore Structure of Surrounding Rock for Underground Strategic Petroleum Reserve (SPR) Caverns in Bedded Rock Salt," Energies, MDPI, vol. 13(7), pages 1-22, March.
- Yang, Chunhe & Wang, Tongtao & Li, Yinping & Yang, Haijun & Li, Jianjun & Qu, Dan’an & Xu, Baocai & Yang, Yun & Daemen, J.J.K., 2015. "Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China," Applied Energy, Elsevier, vol. 137(C), pages 467-481.
More about this item
Keywords
Salt cavern; Underground gas storage; Aero-thermo-mechanical modelling; Thermodynamic behaviour; Thermo-mechanical response; 3D realistic cavern geometry;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222024872. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.