IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4349-d1467877.html
   My bibliography  Save this article

One Health Ecological Approach to Sustainable Wireless Energy Transfer Aboard Electric Vehicles for Smart Cities

Author

Listed:
  • Adel Razek

    (Group of Electrical Engineering—Paris (GeePs), CNRS, University of Paris-Saclay and Sorbonne University, F91190 Gif sur Yvette, France)

Abstract

This investigation is part of a topical situation where wireless equipment is gradually being used for energy transfer, particularly for autonomous systems and the use of decarbonized energies. A characteristic example of decarbonized autonomous use is linked to the substitution of thermal engine vehicles for electric vehicles (EVs) equipped with energy storage batteries. This response was considered in an ecological context of reducing air pollution and defending planetary biodiversity, which are currently vital. These EVs ultimately operate thanks to the wireless charging of their batteries when stationary or running. By changing long-established means of transport that have become a threat to biodiversity, it is necessary to ensure that innovative replacement solutions protect this biodiversity. In addition, the construction of wireless power transfer (WPT) battery chargers for these EVs must offer an optimal ecology of clean energy saving. In such a context, the two concepts of One Health (OH) and Responsible Attitude (RA) will find their place in the design and control of WPT tools in EVs. This contribution aims to illustrate and analyze the roles of the green and non-wasteful OH and RA approaches in the design and control of WPT embedded in EVs for the smart city (SC) environment. In the paper, WPT tools are first introduced. The design and control of EV battery charging tools are then examined. The biological effects on living tissues due to the electromagnetic field (EMF) radiation of WPT are analyzed. The phenomena and equations governing the design of WPT and the effects of EMF radiation are then exposed. The OH and RA approaches in the SC context are afterward analyzed. The protection against the unsafe effects of WPT tools in the SC environment is consequently explored. The analyses followed in the paper are supported by examples from the literature. The explorations proposed in this contribution have made it possible to highlight certain notions, allowing a more in-depth understanding of the use of EVs with WPT rechargeable batteries for SCs. Thus, the analysis and fusion of these topics are at the heart of this contribution.

Suggested Citation

  • Adel Razek, 2024. "One Health Ecological Approach to Sustainable Wireless Energy Transfer Aboard Electric Vehicles for Smart Cities," Energies, MDPI, vol. 17(17), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4349-:d:1467877
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4349/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4349/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bi, Zicheng & Kan, Tianze & Mi, Chunting Chris & Zhang, Yiming & Zhao, Zhengming & Keoleian, Gregory A., 2016. "A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility," Applied Energy, Elsevier, vol. 179(C), pages 413-425.
    2. Nikolaos Petroulakis & Mats-Olof Mattsson & Panos Chatziadam & Myrtill Simko & Andreas Gavrielides & Andrianos M. Yiorkas & Olga Zeni & Maria Rosaria Scarfi & Eduardo Soudah & Ruben Otin & Fulvio Sche, 2023. "NextGEM: Next-Generation Integrated Sensing and Analytical System for Monitoring and Assessing Radiofrequency Electromagnetic Field Exposure and Health," IJERPH, MDPI, vol. 20(12), pages 1-18, June.
    3. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    4. Kai Song & Yu Lan & Xian Zhang & Jinhai Jiang & Chuanyu Sun & Guang Yang & Fengshuo Yang & Hao Lan, 2023. "A Review on Interoperability of Wireless Charging Systems for Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-22, February.
    5. Mahmoud Ibrahim & Anton Rassõlkin & Toomas Vaimann & Ants Kallaste, 2022. "Overview on Digital Twin for Autonomous Electrical Vehicles Propulsion Drive System," Sustainability, MDPI, vol. 14(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    2. Wang, De'an & Zhang, Jiantao & Cui, Shumei & Bie, Zhi & Chen, Fuze & Zhu, Chunbo, 2024. "The state-of-the-arts of underwater wireless power transfer: A comprehensive review and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Liping Mo & Xiaosheng Wang & Yibo Wang & Ben Zhang & Chaoqiang Jiang, 2024. "Mutual Inductance Estimation of SS-IPT System through Time-Domain Modeling and Nonlinear Least Squares," Energies, MDPI, vol. 17(13), pages 1-14, July.
    4. Pietro Stabile & Federico Ballo & Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2023. "Eco-Driving Strategy Implementation for Ultra-Efficient Lightweight Electric Vehicles in Realistic Driving Scenarios," Energies, MDPI, vol. 16(3), pages 1-19, January.
    5. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2023. "Electromagnetic Interference in Cardiac Implantable Electronic Devices Due to Dynamic Wireless Power Systems for Electric Vehicles," Energies, MDPI, vol. 16(9), pages 1-17, April.
    6. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    7. Stefan Helber & Justine Broihan & Young Jae Jang & Peter Hecker & Thomas Feuerle, 2018. "Location Planning for Dynamic Wireless Charging Systems for Electric Airport Passenger Buses," Energies, MDPI, vol. 11(2), pages 1-16, January.
    8. Niu, Songyan & Xu, Haiqi & Sun, Zhirui & Shao, Z.Y. & Jian, Linni, 2019. "The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Hyukjoon Lee & Dongjin Ji & Dong-Ho Cho, 2019. "Optimal Design of Wireless Charging Electric Bus System Based on Reinforcement Learning," Energies, MDPI, vol. 12(7), pages 1-20, March.
    10. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    12. Jianfeng Hong & Mingjie Guan & Zaifa Lin & Qiu Fang & Wei Wu & Wenxiang Chen, 2019. "Series-Series/Series Compensated Inductive Power Transmission System with Symmetrical Half-Bridge Resonant Converter: Design, Analysis, and Experimental Assessment," Energies, MDPI, vol. 12(12), pages 1-17, June.
    13. Li, Lantian & Wang, Zhenpo & Gao, Feng & Wang, Shuo & Deng, Junjun, 2020. "A family of compensation topologies for capacitive power transfer converters for wireless electric vehicle charger," Applied Energy, Elsevier, vol. 260(C).
    14. Niu, Songyan & Yu, Hang & Niu, Shuangxia & Jian, Linni, 2020. "Power loss analysis and thermal assessment on wireless electric vehicle charging technology: The over-temperature risk of ground assembly needs attention," Applied Energy, Elsevier, vol. 275(C).
    15. Han, Zhongliang & Xu, Nan & Chen, Hong & Huang, Yanjun & Zhao, Bin, 2018. "Energy-efficient control of electric vehicles based on linear quadratic regulator and phase plane analysis," Applied Energy, Elsevier, vol. 213(C), pages 639-657.
    16. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    17. Silvia Mazzetto, 2024. "A Review of Urban Digital Twins Integration, Challenges, and Future Directions in Smart City Development," Sustainability, MDPI, vol. 16(19), pages 1-33, September.
    18. Xiang Zhang & David Rey & S. Travis Waller & Nathan Chen, 2019. "Range-Constrained Traffic Assignment with Multi-Modal Recharge for Electric Vehicles," Networks and Spatial Economics, Springer, vol. 19(2), pages 633-668, June.
    19. Amiri, Mahshid N. & Håkansson, Anne & Burheim, Odne S. & Lamb, Jacob J., 2024. "Lithium-ion battery digitalization: Combining physics-based models and machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    20. Gang Chen & Dawei Hu & Steven Chien & Lei Guo & Mingzheng Liu, 2020. "Optimizing Wireless Charging Locations for Battery Electric Bus Transit with a Genetic Algorithm," Sustainability, MDPI, vol. 12(21), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4349-:d:1467877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.