IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p532-d1575878.html
   My bibliography  Save this article

Magnetic Gear Wireless Power Transfer System: Prototype and Electric Vehicle Charging

Author

Listed:
  • Caleb Dunlap

    (Center for Energy Systems Research, Tennessee Tech University, 1020 Stadium Dr., Cookeville, TN 38505, USA
    Department of Electrical and Computer Engineering, Tennessee Tech University, 115 W. Tenth St., Cookeville, TN 38505, USA)

  • Charles W. Van Neste

    (Department of Electrical and Computer Engineering, Tennessee Tech University, 115 W. Tenth St., Cookeville, TN 38505, USA)

Abstract

This paper investigates the potential of a magnetic gear wireless power transfer (WPT) system for electric vehicle (EV) charging, with the advantages of low-frequency operation, low foreign object interference, low electromagnetic emissions, and high misalignment tolerance. The study explores the novel impact of Halbach arrays that enhance the flux density in desirable locations while decreasing the flux in undesirable locations, which provides the benefit of decreased foreign object attraction. The initial prototype results demonstrate that the Halbach system can transmit approximately 34.65 W with a transfer efficiency of 64% across a gap of 104 mm. The Halbach system is experimentally compared to a conventional magnet arrangement, which achieved a maximum power transfer of 88 W over 104 mm. The Halbach system is applied to a personal mobility EV to enable wireless charging at low frequency. The axial design of this WPT system has the unique benefit of a 360° radial coupling angle that maintains constant, near-maximum levels of power transfer and efficiency. This full circle coupling angle allows the personal EV to park in any direct vicinity of the charger and achieve the same level of charging given a certain distance. This study delivers important contributions to advancing a low-frequency wireless EV charging technology based on magnetic gears, that sets the stage for future innovations focused on optimizing efficiency, increasing safety, and simplifying the charging process.

Suggested Citation

  • Caleb Dunlap & Charles W. Van Neste, 2025. "Magnetic Gear Wireless Power Transfer System: Prototype and Electric Vehicle Charging," Energies, MDPI, vol. 18(3), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:532-:d:1575878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/532/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/532/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gerardo Ruiz-Ponce & Marco A. Arjona & Concepcion Hernandez & Rafael Escarela-Perez, 2023. "A Review of Magnetic Gear Technologies Used in Mechanical Power Transmission," Energies, MDPI, vol. 16(4), pages 1-32, February.
    2. Kai Song & Yu Lan & Xian Zhang & Jinhai Jiang & Chuanyu Sun & Guang Yang & Fengshuo Yang & Hao Lan, 2023. "A Review on Interoperability of Wireless Charging Systems for Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-22, February.
    3. Chunhua Liu & K. T. Chau, 2014. "Electromagnetic Design of a New Electrically Controlled Magnetic Variable-Speed Gearing Machine," Energies, MDPI, vol. 7(3), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liping Mo & Xiaosheng Wang & Yibo Wang & Ben Zhang & Chaoqiang Jiang, 2024. "Mutual Inductance Estimation of SS-IPT System through Time-Domain Modeling and Nonlinear Least Squares," Energies, MDPI, vol. 17(13), pages 1-14, July.
    2. Roman Gozdur & Piotr Gębara & Krzysztof Chwastek, 2020. "A Study of Temperature-Dependent Hysteresis Curves for a Magnetocaloric Composite Based on La(Fe, Mn, Si) 13 -H Type Alloys," Energies, MDPI, vol. 13(6), pages 1-15, March.
    3. Valentin Mateev & Miglenna Todorova & Iliana Marinova, 2023. "Design Aspects of Conical Coaxial Magnetic Gears," Energies, MDPI, vol. 16(10), pages 1-16, May.
    4. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    5. Wang, De'an & Zhang, Jiantao & Cui, Shumei & Bie, Zhi & Chen, Fuze & Zhu, Chunbo, 2024. "The state-of-the-arts of underwater wireless power transfer: A comprehensive review and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Md Aurongjeb & Yumin Liu & Muhammad Ishfaq, 2025. "Design and Simulation of Inductive Power Transfer Pad for Electric Vehicle Charging," Energies, MDPI, vol. 18(2), pages 1-13, January.
    7. Rajeshkumar Ramraj & Ehsan Pashajavid & Sanath Alahakoon & Shantha Jayasinghe, 2023. "Quality of Service and Associated Communication Infrastructure for Electric Vehicles," Energies, MDPI, vol. 16(20), pages 1-28, October.
    8. Yujun Shi & Linni Jian, 2018. "A Novel Dual-Permanent-Magnet-Excited Machine with Flux Strengthening Effect for Low-Speed Large-Torque Applications," Energies, MDPI, vol. 11(1), pages 1-17, January.
    9. Jin Liu & Wenxiang Zhao & Jinghua Ji & Guohai Liu & Tao Tao, 2016. "A Novel Flux Focusing Magnetically Geared Machine with Reduced Eddy Current Loss," Energies, MDPI, vol. 9(11), pages 1-15, November.
    10. Lianling Ren & Wei Liao & Jun Chen, 2024. "Systematic Design and Implementation Method of Battery-Energy Comprehensive Management Platform in Charging and Swapping Scenarios," Energies, MDPI, vol. 17(5), pages 1-13, March.
    11. Yujun Shi & Jin Wei & Zhengxing Deng & Linni Jian, 2017. "A Novel Electric Vehicle Powertrain System Supporting Multi-Path Power Flows: Its Architecture, Parameter Determination and System Simulation," Energies, MDPI, vol. 10(2), pages 1-15, February.
    12. Mukhtar Sani & Maxime Piffard & Vincent Heiries, 2023. "Fault Detection for PEM Fuel Cells via Analytical Redundancy: A Critical Review and Prospects," Energies, MDPI, vol. 16(14), pages 1-16, July.
    13. Aleksandra Alicja Olejarz & Małgorzata Kędzior-Laskowska, 2024. "How Much Progress Have We Made towards Decarbonization? Policy Implications Based on the Demand for Electric Cars in Poland," Energies, MDPI, vol. 17(16), pages 1-28, August.
    14. Adel Razek, 2024. "One Health Ecological Approach to Sustainable Wireless Energy Transfer Aboard Electric Vehicles for Smart Cities," Energies, MDPI, vol. 17(17), pages 1-21, August.
    15. George Stamatellos & Antiopi-Malvina Stamatellou, 2024. "The Interaction between Short- and Long-Term Energy Storage in an nZEB Office Building," Energies, MDPI, vol. 17(6), pages 1-27, March.
    16. Susana Carolina Guzmán-Rosas, 2023. "Strategies Used by Rural Indigenous Populations to Cope with Energy Poverty, in San Luis Potosí, Mexico," Energies, MDPI, vol. 16(11), pages 1-23, June.
    17. Adrian Chmielewski & Piotr Piórkowski & Jakub Możaryn & Stepan Ozana, 2023. "Sustainable Development of Operational Infrastructure for Electric Vehicles: A Case Study for Poland," Energies, MDPI, vol. 16(11), pages 1-43, June.
    18. Eman A. El Desouky & Emad A. Soliman & Hessa H. Al-Rasheed & Ayman El-Faham & M. A. Abu-Saied, 2023. "Novel Proton Exchange Membranes Based on Sulfonated Poly(acrylonitrile- co -glycidyl methacrylate)/Poly(vinyl chloride) Composite," Sustainability, MDPI, vol. 15(14), pages 1-24, July.
    19. Gaith Baccouche & Mohamed Haikel Chehab & Chokri Ben Salah & Mehdi Tlija & Abdelhamid Rabhi, 2024. "Hybrid PVP/Battery/Fuel Cell Wireless Charging Stations Using High-Frequency Optimized Inverter Technology for Electric Vehicles," Energies, MDPI, vol. 17(14), pages 1-24, July.
    20. Hang Zhao & Chunhua Liu & Zaixin Song & Jincheng Yu, 2019. "Analytical Modeling and Comparison of Two Consequent-Pole Magnetic-Geared Machines for Hybrid Electric Vehicles," Energies, MDPI, vol. 12(10), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:532-:d:1575878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.