IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1394-d1051727.html
   My bibliography  Save this article

Eco-Driving Strategy Implementation for Ultra-Efficient Lightweight Electric Vehicles in Realistic Driving Scenarios

Author

Listed:
  • Pietro Stabile

    (Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy)

  • Federico Ballo

    (Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy)

  • Giorgio Previati

    (Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy)

  • Giampiero Mastinu

    (Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy)

  • Massimiliano Gobbi

    (Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy)

Abstract

This paper aims to provide a quantitative assessment of the effect of driver action and road traffic conditions in the real implementation of eco-driving strategies. The study specifically refers to an ultra-efficient battery-powered electric vehicle designed for energy-efficiency competitions. The method is based on the definition of digital twins of vehicle and driving scenario. The models are used in a driving simulator to accurately evaluate the power demand. The vehicle digital twin is built in a co-simulation environment between VI-CarRealTime and Simulink. A digital twin of the Brooklands Circuit (UK) is created leveraging the software RoadRunner. After validation with actual telemetry acquisitions, the model is employed offline to find the optimal driving strategy, namely, the optimal input throttle profile, which minimizes the energy consumption over an entire lap. The obtained reference driving strategy is used during real-time driving sessions at the dynamic driving simulator installed at Politecnico di Milano (DriSMi) to include the effects of human driver and road traffic conditions. Results assess that, in a realistic driving scenario, the energy demand could increase more than 20% with respect to the theoretical value. Such a reduction in performance can be mitigated by adopting eco-driving assistance systems.

Suggested Citation

  • Pietro Stabile & Federico Ballo & Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2023. "Eco-Driving Strategy Implementation for Ultra-Efficient Lightweight Electric Vehicles in Realistic Driving Scenarios," Energies, MDPI, vol. 16(3), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1394-:d:1051727
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1394/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1394/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pietro Stabile & Federico Ballo & Gianpiero Mastinu & Massimiliano Gobbi, 2021. "An Ultra-Efficient Lightweight Electric Vehicle—Power Demand Analysis to Enable Lightweight Construction," Energies, MDPI, vol. 14(3), pages 1-18, February.
    2. Barkenbus, Jack N., 2010. "Eco-driving: An overlooked climate change initiative," Energy Policy, Elsevier, vol. 38(2), pages 762-769, February.
    3. Mahmoud Ibrahim & Anton Rassõlkin & Toomas Vaimann & Ants Kallaste, 2022. "Overview on Digital Twin for Autonomous Electrical Vehicles Propulsion Drive System," Sustainability, MDPI, vol. 14(2), pages 1-16, January.
    4. Wang, Siyang & Lin, Xianke, 2020. "Eco-driving control of connected and automated hybrid vehicles in mixed driving scenarios," Applied Energy, Elsevier, vol. 271(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Haoxuan & Zhuang, Weichao & Chen, Boli & Wang, Yan & Lu, Yanbo & Liu, Ying & Xu, Liwei & Yin, Guodong, 2022. "A comparative study of energy-efficient driving strategy for connected internal combustion engine and electric vehicles at signalized intersections," Applied Energy, Elsevier, vol. 310(C).
    2. Lee, Heeyun & Kim, Kyunghyun & Kim, Namwook & Cha, Suk Won, 2022. "Energy efficient speed planning of electric vehicles for car-following scenario using model-based reinforcement learning," Applied Energy, Elsevier, vol. 313(C).
    3. Ahmed, Sumayyah & Sanguinetti, Angela, 2015. "OBDEnergy: Making Metrics Meaningful in Eco-driving Feedback," Institute of Transportation Studies, Working Paper Series qt0x73t2jw, Institute of Transportation Studies, UC Davis.
    4. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    5. Yuan, Weichang & Frey, H. Christopher, 2020. "Potential for metro rail energy savings and emissions reduction via eco-driving," Applied Energy, Elsevier, vol. 268(C).
    6. Hou, Zhuoran & Guo, Jianhua & Li, Jihao & Hu, Jinchen & Sun, Wen & Zhang, Yuanjian, 2023. "Exploration the pathways of connected electric vehicle design: A vehicle-environment cooperation energy management strategy," Energy, Elsevier, vol. 271(C).
    7. Geir H. M. Bjertnæs, 2019. "Efficient taxation of fuel and road use," Discussion Papers 905, Statistics Norway, Research Department.
    8. Echeverría, Lucía & Gimenez-Nadal, J. Ignacio & Molina, José Alberto, 2021. "Carpooling: User profiles and well-being," Nülan. Deposited Documents 3568, Universidad Nacional de Mar del Plata, Facultad de Ciencias Económicas y Sociales, Centro de Documentación.
    9. Li, Bin & Dong, Xujun & Wen, Jianghui, 2022. "Cooperative-driving control for mixed fleets at wireless charging sections for lane changing behaviour," Energy, Elsevier, vol. 243(C).
    10. Breno Tostes de Gomes Garcia & Diana Mery Messias Lopes & Ilton Curty Leal Junior & José Carlos Cesar Amorim & Marcelino Aurélio Vieira da Silva & Vanessa de Almeida Guimarães, 2019. "Analysis of the Performance of Transporting Soybeans from Mato Grosso for Export: A Case Study of the Tapajós-Teles Pires Waterway," Sustainability, MDPI, vol. 11(21), pages 1-26, November.
    11. Xie, Shaobo & Lang, Kun & Qi, Shanwei, 2020. "Aerodynamic-aware coordinated control of following speed and power distribution for hybrid electric trucks," Energy, Elsevier, vol. 209(C).
    12. Simin Hesami & Majid Vafaeipour & Cedric De Cauwer & Evy Rombaut & Lieselot Vanhaverbeke & Thierry Coosemans, 2023. "Dynamic Pro-Active Eco-Driving Control Framework for Energy-Efficient Autonomous Electric Mobility," Energies, MDPI, vol. 16(18), pages 1-19, September.
    13. Nikoleta Mikušová & Gabriel Fedorko & Vieroslav Molnár & Martina Hlatká & Rudolf Kampf & Veronika Sirková, 2021. "Possibility of a Solution of the Sustainability of Transport and Mobility with the Application of Discrete Computer Simulation—A Case Study," Sustainability, MDPI, vol. 13(17), pages 1-24, September.
    14. Silvia Mazzetto, 2024. "A Review of Urban Digital Twins Integration, Challenges, and Future Directions in Smart City Development," Sustainability, MDPI, vol. 16(19), pages 1-33, September.
    15. Strömberg, Helena & Karlsson, I.C. MariAnne & Rexfelt, Oskar, 2015. "Eco-driving: Drivers’ understanding of the concept and implications for future interventions," Transport Policy, Elsevier, vol. 39(C), pages 48-54.
    16. Liu, Rui & Liu, Hui & Han, Lijin & Nie, Shida & Ruan, Shumin & Yang, Ningkang, 2023. "Predictive eco-driving strategy for hybrid electric vehicles on off-road terrain considering vehicle stability constraint," Applied Energy, Elsevier, vol. 350(C).
    17. Nurul Hidayah Muslim & Ali Keyvanfar & Arezou Shafaghat & Mu’azu Mohammed Abdullahi & Majid Khorami, 2018. "Green Driver: Travel Behaviors Revisited on Fuel Saving and Less Emission," Sustainability, MDPI, vol. 10(2), pages 1-30, January.
    18. Frank Meissner & Armin Haas & Jochen Hinkel & Alexander Bisaro, 2020. "A typology for analysing mitigation and adaptation win-win strategies," Climatic Change, Springer, vol. 160(4), pages 539-564, June.
    19. Zoltán Pusztai & Péter Kőrös & Ferenc Szauter & Ferenc Friedler, 2023. "Implementation of Optimized Regenerative Braking in Energy Efficient Driving Strategies," Energies, MDPI, vol. 16(6), pages 1-20, March.
    20. Juliet Namukasa & Sheila Namagembe & Faridah Nakayima, 2020. "Fuel Efficiency Vehicle Adoption and Carbon Emissions in a Country Context," International Journal of Global Sustainability, Macrothink Institute, vol. 4(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1394-:d:1051727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.