Optical Methods for Measuring Icing of Wind Turbine Blades
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sima Rastayesh & Lijia Long & John Dalsgaard Sørensen & Sebastian Thöns, 2019. "Risk Assessment and Value of Action Analysis for Icing Conditions of Wind Turbines Close to Highways," Energies, MDPI, vol. 12(14), pages 1-15, July.
- Yong Liu & Qiran Li & Masoud Farzaneh & B. X. Du, 2020. "Image Characteristic Extraction of Ice-Covered Outdoor Insulator for Monitoring Icing Degree," Energies, MDPI, vol. 13(20), pages 1-12, October.
- Jingjing Wang & Junhua Wang & Jianwei Shao & Jiangui Li, 2017. "Image Recognition of Icing Thickness on Power Transmission Lines Based on a Least Squares Hough Transform," Energies, MDPI, vol. 10(4), pages 1-15, March.
- Madi, Ezieddin & Pope, Kevin & Huang, Weimin & Iqbal, Tariq, 2019. "A review of integrating ice detection and mitigation for wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 269-281.
- Lijun Zhang & Kai Liu & Yufeng Wang & Zachary Bosire Omariba, 2018. "Ice Detection Model of Wind Turbine Blades Based on Random Forest Classifier," Energies, MDPI, vol. 11(10), pages 1-15, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hongmei Cui & Zhongyang Li & Bingchuan Sun & Teng Fan & Yonghao Li & Lida Luo & Yong Zhang & Jian Wang, 2022. "A New Ice Quality Prediction Method of Wind Turbine Impeller Based on the Deep Neural Network," Energies, MDPI, vol. 15(22), pages 1-18, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Valery Okulov & Ivan Kabardin & Dmitry Mukhin & Konstantin Stepanov & Nastasia Okulova, 2021. "Physical De-Icing Techniques for Wind Turbine Blades," Energies, MDPI, vol. 14(20), pages 1-16, October.
- Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
- Zhijin Zhang & Hang Zhang & Xu Zhang & Qin Hu & Xingliang Jiang, 2024. "A Review of Wind Turbine Icing and Anti/De-Icing Technologies," Energies, MDPI, vol. 17(12), pages 1-34, June.
- Wenjie Wang & Yu Xue & Chengkuan He & Yongnian Zhao, 2022. "Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades," Energies, MDPI, vol. 15(15), pages 1-31, August.
- Lianming Li & Zhiwei Wang & Defeng He, 2024. "U-Net Semantic Segmentation-Based Calorific Value Estimation of Straw Multifuels for Combined Heat and Power Generation Processes," Energies, MDPI, vol. 17(20), pages 1-16, October.
- Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Nermin Suljanović & Aljo Mujčić & Matej Zajc, 2017. "Communication Characteristics of Faulted Overhead High Voltage Power Lines at Low Radio Frequencies," Energies, MDPI, vol. 10(11), pages 1-24, November.
- Stoyanov, D.B. & Nixon, J.D. & Sarlak, H., 2021. "Analysis of derating and anti-icing strategies for wind turbines in cold climates," Applied Energy, Elsevier, vol. 288(C).
- Wang, Zixuan & Qin, Bo & Sun, Haiyue & Zhang, Jian & Butala, Mark D. & Demartino, Cristoforo & Peng, Peng & Wang, Hongwei, 2023. "An imbalanced semi-supervised wind turbine blade icing detection method based on contrastive learning," Renewable Energy, Elsevier, vol. 212(C), pages 251-262.
- Yanpeng Hao & Jie Wei & Xiaolan Jiang & Lin Yang & Licheng Li & Junke Wang & Hao Li & Ruihai Li, 2018. "Icing Condition Assessment of In-Service Glass Insulators Based on Graphical Shed Spacing and Graphical Shed Overhang," Energies, MDPI, vol. 11(2), pages 1-12, February.
- Chang Cai & Jicai Guo & Xiaowen Song & Yanfeng Zhang & Jianxin Wu & Shufeng Tang & Yan Jia & Zhitai Xing & Qing’an Li, 2023. "Review of Data-Driven Approaches for Wind Turbine Blade Icing Detection," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
- Issouf Fofana & Stephan Brettschneider, 2022. "Outdoor Insulation and Gas-Insulated Switchgears," Energies, MDPI, vol. 15(21), pages 1-7, November.
- Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
- Gregory Duthé & Imad Abdallah & Sarah Barber & Eleni Chatzi, 2021. "Modeling and Monitoring Erosion of the Leading Edge of Wind Turbine Blades," Energies, MDPI, vol. 14(21), pages 1-33, November.
- Jeff Laninga & Ali Nasr Esfahani & Gevindu Ediriweera & Nathan Jacob & Behzad Kordi, 2023. "Monitoring Technologies for HVDC Transmission Lines," Energies, MDPI, vol. 16(13), pages 1-32, June.
- Thanh-Cao Le & Tran-Huu-Tin Luu & Huu-Phuong Nguyen & Trung-Hau Nguyen & Duc-Duy Ho & Thanh-Canh Huynh, 2022. "Piezoelectric Impedance-Based Structural Health Monitoring of Wind Turbine Structures: Current Status and Future Perspectives," Energies, MDPI, vol. 15(15), pages 1-31, July.
- Samet Ozturk & Vasilis Fthenakis, 2020. "Predicting Frequency, Time-To-Repair and Costs of Wind Turbine Failures," Energies, MDPI, vol. 13(5), pages 1-25, March.
- Jiazheng Lu & Jianping Hu & Zhen Fang & Xinhan Qiao & Zhijin Zhang, 2021. "Electric Field Distribution and AC Breakdown Characteristics of Polluted Novel Lightning Protection Insulator under Icing Conditions," Energies, MDPI, vol. 14(22), pages 1-11, November.
- Sun, Haoyang & Lin, Guiping & Jin, Haichuan & Guo, Jinghui & Ge, Kun & Wang, Jiaqi & He, Xi & Wen, Dongsheng, 2023. "2D Numerical investigation of surface wettability induced liquid water flow on the surface of the NACA0012 airfoil," Renewable Energy, Elsevier, vol. 205(C), pages 326-339.
- Yanpeng Hao & Zhaohong Yao & Junke Wang & Hao Li & Ruihai Li & Lin Yang & Wei Liang, 2019. "A Classification Method for Transmission Line Icing Process Curve Based on Hierarchical K-Means Clustering," Energies, MDPI, vol. 12(24), pages 1-14, December.
More about this item
Keywords
wind energy; icing; optical methods; total internal reflection; a method based on structured lighting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6485-:d:653020. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.