IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i11p1142-d679143.html
   My bibliography  Save this article

A Review of Methods and Techniques for Detecting Frost on Plant Surfaces

Author

Listed:
  • Huan Song

    (Agricultural Engineering Institute, Jiangsu University, Zhenjiang 212013, China)

  • Yongguang Hu

    (Agricultural Engineering Institute, Jiangsu University, Zhenjiang 212013, China)

  • Yongzong Lu

    (Agricultural Engineering Institute, Jiangsu University, Zhenjiang 212013, China)

  • Jizhang Wang

    (Agricultural Engineering Institute, Jiangsu University, Zhenjiang 212013, China)

  • Qingmin Pan

    (Agricultural Engineering Institute, Jiangsu University, Zhenjiang 212013, China)

  • Pingping Li

    (College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China)

Abstract

Severe frost usually has adverse impacts on agricultural production, resulting in crop freeze injury, poor crop yield, and crop quality reduction. Timely and accurate detection of frost plays an important role in cold damage warnings, prevention, and control. Current frost detection methods mostly use physical properties such as light, electricity, and heat, or the judge and quantify using environmental factors such as temperature and wind speed. However, it is difficult to detect and accurately identify the frosting phenomenon in real time during field trials because of the complex environment, different plant types, and interference by many factors during observation. To provide an overview of the analytical tools for scientists, researchers, and product developers, a review and comparative analysis of the available literature on frost mechanisms, correlations, and characteristics are presented in this study. First, the mechanisms of the frost formation process, frost level, and the significance of detection, are introduced. Then, the methods and techniques used to measure frost on plant surfaces are synthetically classified and further compared. Moreover, the key points and difficulties are summarized and discussed. Finally, some constructive methods of frost detection are proposed to improve the frost detection process.

Suggested Citation

  • Huan Song & Yongguang Hu & Yongzong Lu & Jizhang Wang & Qingmin Pan & Pingping Li, 2021. "A Review of Methods and Techniques for Detecting Frost on Plant Surfaces," Agriculture, MDPI, vol. 11(11), pages 1-22, November.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1142-:d:679143
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/11/1142/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/11/1142/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rafati Nasr, Mohammad & Fauchoux, Melanie & Besant, Robert W. & Simonson, Carey J., 2014. "A review of frosting in air-to-air energy exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 538-554.
    2. Hacıefendioğlu, Kemal & Başağa, Hasan Basri & Yavuz, Zafer & Karimi, Mohammad Tordi, 2022. "Intelligent ice detection on wind turbine blades using semantic segmentation and class activation map approaches based on deep learning method," Renewable Energy, Elsevier, vol. 182(C), pages 1-16.
    3. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    4. Sheng, Wei & Liu, Pengpeng & Dang, Chaobin & Liu, Guixin, 2017. "Review of restraint frost method on cold surface," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 806-813.
    5. Ercan Atam & Se-Woon Hong & Alessia Arteconi, 2020. "Thermofluid Modelling of Large-Scale Orchards for Optimal Design and Control of Active Frost Prevention Systems," Energies, MDPI, vol. 13(2), pages 1-17, January.
    6. Song He & Yanmei Zhang & Wansheng Yang & Xudong Zhao & Bin Zeng, 2018. "Fabrication and Frosting Properties Study of Surface-Active Agents Coating Based on Nanoporous Aluminum Substrate," Energies, MDPI, vol. 11(10), pages 1-25, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Zhang & Guanmin Zhang & Aiqun Zhang & Yinhan Jin & Ruirui Ru & Maocheng Tian, 2018. "Frosting Phenomenon and Frost-Free Technology of Outdoor Air Heat Exchanger for an Air-Source Heat Pump System in China: An Analysis and Review," Energies, MDPI, vol. 11(10), pages 1-36, October.
    2. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    3. Chen, Chih-Hao & Hsu, Chien-Yeh & Chen, Chih-Chieh & Chiang, Yuan-Ching & Chen, Sih-Li, 2016. "Silica gel/polymer composite desiccant wheel combined with heat pump for air-conditioning systems," Energy, Elsevier, vol. 94(C), pages 87-99.
    4. Luo, Zhenyu & Zhu, Na & Yu, Zhongyi & Zhang, Qin & Yan, Lei & Hu, Pingfang, 2024. "Performance study of dual-source heat pump integrated with radiation capillary terminal system," Energy, Elsevier, vol. 304(C).
    5. Shuxue, Xu & Yueyue, Wang & Jianhui, Niu & Guoyuan, Ma, 2020. "‘Coal-to-electricity’ project is ongoing in north China," Energy, Elsevier, vol. 191(C).
    6. Shi, Peng & Wang, Lin-Shu & Schwartz, Paul & Hofbauer, Peter, 2020. "State-wide comparative analysis of the cost saving potential of Vuilleumier heat pumps in residential houses," Applied Energy, Elsevier, vol. 277(C).
    7. Wang, Feng & Liang, Caihua & Zhang, Xiaosong, 2018. "Research of anti-frosting technology in refrigeration and air conditioning fields: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 707-722.
    8. Rafati Nasr, Mohammad & Kassai, Miklos & Ge, Gaoming & Simonson, Carey J., 2015. "Evaluation of defrosting methods for air-to-air heat/energy exchangers on energy consumption of ventilation," Applied Energy, Elsevier, vol. 151(C), pages 32-40.
    9. Zhang, Feng & Cai, Jingyong & Ji, Jie & Han, Kedong & Ke, Wei, 2020. "Experimental investigation on the heating and cooling performance of a solar air composite heat source heat pump," Renewable Energy, Elsevier, vol. 161(C), pages 221-229.
    10. Conte, Riccardo & Zanetti, Emanuele & Tancon, Marco & Azzolin, Marco & Girotto, Sergio & Del Col, Davide, 2024. "The advantage of running a direct expansion CO2 heat pump with solar-and-air simultaneous heat sources: experimental and numerical investigation," Applied Energy, Elsevier, vol. 369(C).
    11. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    12. Xiao, Biao & Chang, Huawei & He, Lin & Zhao, Shunan & Shu, Shuiming, 2020. "Annual performance analysis of an air source heat pump water heater using a new eco-friendly refrigerant mixture as an alternative to R134a," Renewable Energy, Elsevier, vol. 147(P1), pages 2013-2023.
    13. Chen, Siliang & Chen, Kang & Zhu, Xu & Jin, Xinqiao & Du, Zhimin, 2022. "Deep learning-based image recognition method for on-demand defrosting control to save energy in commercial energy systems," Applied Energy, Elsevier, vol. 324(C).
    14. Li, Sihui & Gong, Guangcai & Peng, Jinqing, 2019. "Dynamic coupling method between air-source heat pumps and buildings in China’s hot-summer/cold-winter zone," Applied Energy, Elsevier, vol. 254(C).
    15. Badri, Deyae & Toublanc, Cyril & Rouaud, Olivier & Havet, Michel, 2021. "Review on frosting, defrosting and frost management techniques in industrial food freezers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    16. Anisimov, Sergey & Pandelidis, Demis & Jedlikowski, Andrzej, 2015. "Performance study of the indirect evaporative air cooler and heat recovery exchanger in air conditioning system during the summer and winter operation," Energy, Elsevier, vol. 89(C), pages 205-225.
    17. Cai, Jingyong & Zhang, Feng & Ji, Jie, 2020. "Comparative analysis of solar-air dual source heat pump system with different heat source configurations," Renewable Energy, Elsevier, vol. 150(C), pages 191-203.
    18. Chang Cai & Jicai Guo & Xiaowen Song & Yanfeng Zhang & Jianxin Wu & Shufeng Tang & Yan Jia & Zhitai Xing & Qing’an Li, 2023. "Review of Data-Driven Approaches for Wind Turbine Blade Icing Detection," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    19. Sim, Jaehoon & Lee, Hyoin & Jeong, Ji Hwan, 2021. "Optimal design of variable-path heat exchanger for energy efficiency improvement of air-source heat pump system," Applied Energy, Elsevier, vol. 290(C).
    20. Lim, Dae Kyu & Ahn, Byoung Ha & Jeong, Ji Hwan, 2018. "Method to control an air conditioner by directly measuring the relative humidity of indoor air to improve the comfort and energy efficiency," Applied Energy, Elsevier, vol. 215(C), pages 290-299.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1142-:d:679143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.