IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2737-d1408421.html
   My bibliography  Save this article

Virtual Inertia Control for Power Electronics-Integrated Power Systems: Challenges and Prospects

Author

Listed:
  • Md Asaduzzaman Shobug

    (School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4215, Australia)

  • Nafis Ahmed Chowdhury

    (School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4215, Australia)

  • Md Alamgir Hossain

    (Queensland Micro & Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia)

  • Mohammad J. Sanjari

    (School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4215, Australia)

  • Junwei Lu

    (School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4215, Australia)

  • Fuwen Yang

    (School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4215, Australia)

Abstract

In modern power systems, conventional energy production units are being replaced by clean and environmentally friendly renewable energy resources (RESs). Integrating RESs into power systems presents numerous challenges, notably the need for enhanced grid stability and reliability. RES-dominated power systems fail to meet sufficient demand due to insufficient inertia responses. To address this issue, various virtual inertia emulation techniques are proposed to bolster power system stability amidst the increased integration of renewable energy sources into the grid. This review article explores state-of-the-art virtual inertia support strategies tailored to accommodate the increased penetration of RESs. Beginning with an overview of this study, it explores the existing virtual inertia techniques and investigates the various methodologies, including control algorithms, parameters, configurations, key contributions, sources, controllers, and simulation platforms. The promising virtual inertia control strategies are categorised based on the techniques used in their control algorithms and their applications. Furthermore, this review explains evolving research trends and identifies promising avenues for future investigations. Emphasis is placed on addressing key challenges such as dynamic response characteristics, scalability, and interoperability with conventional grid assets. The initial database search reveals 1529 publications. Finally, 106 articles were selected for this study, adding 6 articles manually for the review analysis. By synthesising current knowledge and outlining prospective research directions, this review aims to facilitate the current state of research paths concerning virtual inertia control techniques, along with the categorisation and analysis of these approaches, and showcases a comprehensive understanding of the research domain, which is essential for the sustainable integration of renewable energy into modern power systems via power electronic interface.

Suggested Citation

  • Md Asaduzzaman Shobug & Nafis Ahmed Chowdhury & Md Alamgir Hossain & Mohammad J. Sanjari & Junwei Lu & Fuwen Yang, 2024. "Virtual Inertia Control for Power Electronics-Integrated Power Systems: Challenges and Prospects," Energies, MDPI, vol. 17(11), pages 1-33, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2737-:d:1408421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2737/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2737/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    2. Yifei Wang & Youxin Yuan, 2019. "Inertia Provision and Small Signal Stability Analysis of a Wind-Power Generation System Using Phase-Locked Synchronized Equation," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    3. Yitao Liu & Hongle Chen & Runqiu Fang, 2023. "Virtual Inertia Implemented by Quasi-Z-Source Power Converter for Distributed Power System," Energies, MDPI, vol. 16(18), pages 1-18, September.
    4. Bruno Augusto Bastiani & Ricardo Vasques de Oliveira, 2023. "Frequency Dynamics of Power Systems with Inertial Response Support from Wind Generation," Energies, MDPI, vol. 16(14), pages 1-21, July.
    5. Wogrin, S. & Tejada-Arango, D. & Delikaraoglou, S. & Botterud, A., 2020. "Assessing the impact of inertia and reactive power constraints in generation expansion planning," Applied Energy, Elsevier, vol. 280(C).
    6. Bo Xu & Linwei Zhang & Yin Yao & Xiangdong Yu & Yixin Yang & Dongdong Li, 2021. "Virtual Inertia Coordinated Allocation Method Considering Inertia Demand and Wind Turbine Inertia Response Capability," Energies, MDPI, vol. 14(16), pages 1-15, August.
    7. Rongliang Shi & Caihua Lan & Ji Huang & Chengwei Ju, 2023. "Analysis and Optimization Strategy of Active Power Dynamic Response for VSG under a Weak Grid," Energies, MDPI, vol. 16(12), pages 1-18, June.
    8. Dai Orihara & Hiroshi Kikusato & Jun Hashimoto & Kenji Otani & Takahiro Takamatsu & Takashi Oozeki & Hisao Taoka & Takahiro Matsuura & Satoshi Miyazaki & Hiromu Hamada & Kenjiro Mori, 2021. "Contribution of Voltage Support Function to Virtual Inertia Control Performance of Inverter-Based Resource in Frequency Stability," Energies, MDPI, vol. 14(14), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Liu & Peng Wang & Teyang Zhao & Zhenggang Fan & Houlin Pan, 2022. "A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms," Energies, MDPI, vol. 15(8), pages 1-23, April.
    2. Zhang, Huaiyuan & Liao, Kai & Yang, Jianwei & Zheng, Shunwei & He, Zhengyou, 2024. "Frequency-constrained expansion planning for wind and photovoltaic power in wind-photovoltaic-hydro-thermal multi-power system," Applied Energy, Elsevier, vol. 356(C).
    3. Helistö, Niina & Kiviluoma, Juha & Morales-España, Germán & O’Dwyer, Ciara, 2021. "Impact of operational details and temporal representations on investment planning in energy systems dominated by wind and solar," Applied Energy, Elsevier, vol. 290(C).
    4. Dong, Zhen & Li, Zhongguo & Liang, Zhongchao & Xu, Yiqiao & Ding, Zhengtao, 2021. "Distributed neural network enhanced power generation strategy of large-scale wind power plant for power expansion," Applied Energy, Elsevier, vol. 303(C).
    5. Reza Saeed Kandezy & John Jiang & Di Wu, 2024. "On SINDy Approach to Measure-Based Detection of Nonlinear Energy Flows in Power Grids with High Penetration Inverter-Based Renewables," Energies, MDPI, vol. 17(3), pages 1-18, February.
    6. Pompodakis, Evangelos E. & Kryonidis, Georgios C. & Karapidakis, Emmanuel S., 2023. "Volt/Var control and energy management in non-interconnected insular networks with multiple hybrid power plants," Applied Energy, Elsevier, vol. 331(C).
    7. Zbigniew Skibko & Grzegorz Hołdyński & Andrzej Borusiewicz, 2022. "Impact of Wind Power Plant Operation on Voltage Quality Parameters—Example from Poland," Energies, MDPI, vol. 15(15), pages 1-16, August.
    8. Zhang, Tengxi & Xin, Li & Wang, Shunjiang & Guo, Ren & Wang, Wentao & Cui, Jia & Wang, Peng, 2024. "A novel approach of energy and reserve scheduling for hybrid power systems: Frequency security constraints," Applied Energy, Elsevier, vol. 361(C).
    9. Gustavo Adolfo Gómez-Ramírez & Carlos Meza & Gonzalo Mora-Jiménez & José Rodrigo Rojas Morales & Luis García-Santander, 2023. "The Central American Power System: Achievements, Challenges, and Opportunities for a Green Transition," Energies, MDPI, vol. 16(11), pages 1-20, May.
    10. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    11. Wang, Qi & Miao, Cairan & Tang, Yi, 2022. "Power shortage support strategies considering unified gas-thermal inertia in an integrated energy system," Applied Energy, Elsevier, vol. 328(C).
    12. Aliyu Sabo & Noor Izzri Abdul Wahab & Mohammad Lutfi Othman & Mai Zurwatul Ahlam Mohd Jaffar & Hakan Acikgoz & Hamzeh Beiranvand, 2020. "Application of Neuro-Fuzzy Controller to Replace SMIB and Interconnected Multi-Machine Power System Stabilizers," Sustainability, MDPI, vol. 12(22), pages 1-42, November.
    13. Jiyu Song & Xinhang Zhou & Zhiquan Zhou & Yang Wang & Yifan Wang & Xutao Wang, 2023. "Review of Low Inertia in Power Systems Caused by High Proportion of Renewable Energy Grid Integration," Energies, MDPI, vol. 16(16), pages 1-19, August.
    14. Masilu Marupi & Munira Batool & Morteza Alizadeh & Noor Zanib, 2023. "Transient Stability Improvement of Large-Scale Photovoltaic Grid Using a Flywheel as a Synchronous Machine," Energies, MDPI, vol. 16(2), pages 1-18, January.
    15. Matheus Schramm Dall’Asta & Telles Brunelli Lazzarin, 2024. "A Review of Fast Power-Reserve Control Techniques in Grid-Connected Wind Energy Conversion Systems," Energies, MDPI, vol. 17(2), pages 1-29, January.
    16. Mejia-Ruiz, Gabriel E. & Paternina, Mario R. Arrieta & Segundo Sevilla, Felix Rafael & Korba, Petr, 2022. "Fast hierarchical coordinated controller for distributed battery energy storage systems to mitigate voltage and frequency deviations," Applied Energy, Elsevier, vol. 323(C).
    17. Changgang Li & Zhi Hang & Hengxu Zhang & Qi Guo & Yihua Zhu & Vladimir Terzija, 2020. "Evaluation of DFIGs’ Primary Frequency Regulation Capability for Power Systems with High Penetration of Wind Power," Energies, MDPI, vol. 13(23), pages 1-19, November.
    18. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    19. Sattar, Faisal & Ghosh, Sudipta & Isbeih, Younes J. & El Moursi, Mohamed Shawky & Al Durra, Ahmed & El Fouly, Tarek H.M., 2024. "A predictive tool for power system operators to ensure frequency stability for power grids with renewable energy integration," Applied Energy, Elsevier, vol. 353(PB).
    20. Désiré D. Rasolomampionona & Michał Połecki & Krzysztof Zagrajek & Wiktor Wróblewski & Marcin Januszewski, 2024. "A Comprehensive Review of Load Frequency Control Technologies," Energies, MDPI, vol. 17(12), pages 1-77, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2737-:d:1408421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.