IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v290y2021ics0306261921002312.html
   My bibliography  Save this article

Impact of operational details and temporal representations on investment planning in energy systems dominated by wind and solar

Author

Listed:
  • Helistö, Niina
  • Kiviluoma, Juha
  • Morales-España, Germán
  • O’Dwyer, Ciara

Abstract

Planning of future energy systems with higher prevalence of wind and solar energy requires a careful representation of the temporal and operational characteristics of the system in the investment planning model. This study aims to identify the aspects that should be considered when selecting the representation for a particular system. To demonstrate the impacts that various model representations have in terms of model accuracy and computational effort, we carry out case studies on two test systems implemented within the Backbone energy systems modelling framework. The results show that the temporal and operational representations have different benefits and weaknesses in different system types. The findings provide general guidelines on the relative importance of different model details, depending on the characteristics of the system under study. For example, some temporal sampling strategies can better capture long-term storage needs, while others are more suitable for short-term storage modelling. Likewise, solar-dominated and wind-dominated systems differ in their methodological requirements. Furthermore, the interactions between energy sectors and the operational limits of the technologies for sector coupling should be correctly captured, as they significantly impact on the value of different technologies and their flexibility. Finally, we recommend testing several temporal and technical representations for each particular system in order to ensure the feasibility of the selected method for that purpose. The findings and recommendations inform energy system modellers about improvements that will facilitate higher quality planning results.

Suggested Citation

  • Helistö, Niina & Kiviluoma, Juha & Morales-España, Germán & O’Dwyer, Ciara, 2021. "Impact of operational details and temporal representations on investment planning in energy systems dominated by wind and solar," Applied Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002312
    DOI: 10.1016/j.apenergy.2021.116712
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921002312
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116712?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Poncelet, Kris & Delarue, Erik & D’haeseleer, William, 2020. "Unit commitment constraints in long-term planning models: Relevance, pitfalls and the role of assumptions on flexibility," Applied Energy, Elsevier, vol. 258(C).
    2. Hilbers, Adriaan P. & Brayshaw, David J. & Gandy, Axel, 2019. "Importance subsampling: improving power system planning under climate-based uncertainty," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Niina Helistö & Juha Kiviluoma & Jussi Ikäheimo & Topi Rasku & Erkka Rinne & Ciara O’Dwyer & Ran Li & Damian Flynn, 2019. "Backbone—An Adaptable Energy Systems Modelling Framework," Energies, MDPI, vol. 12(17), pages 1-34, September.
    4. Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2019. "Clustering representative days for power systems generation expansion planning: Capturing the effects of variable renewables and energy storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Kotzur, Leander & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "Time series aggregation for energy system design: Modeling seasonal storage," Applied Energy, Elsevier, vol. 213(C), pages 123-135.
    6. Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron, 2019. "Are complex energy system models more accurate? An intra-model comparison of power system optimization models," Applied Energy, Elsevier, vol. 255(C).
    7. Gils, Hans Christian & Simon, Sonja, 2017. "Carbon neutral archipelago – 100% renewable energy supply for the Canary Islands," Applied Energy, Elsevier, vol. 188(C), pages 342-355.
    8. Levihn, Fabian, 2017. "CHP and heat pumps to balance renewable power production: Lessons from the district heating network in Stockholm," Energy, Elsevier, vol. 137(C), pages 670-678.
    9. Bach, Bjarne & Werling, Jesper & Ommen, Torben & Münster, Marie & Morales, Juan M. & Elmegaard, Brian, 2016. "Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen," Energy, Elsevier, vol. 107(C), pages 321-334.
    10. Bri‐Mathias S. Hodge & Himanshu Jain & Carlo Brancucci & Gab‐Su Seo & Magnus Korpås & Juha Kiviluoma & Hannele Holttinen & James Charles Smith & Antje Orths & Ana Estanqueiro & Lennart Söder & Damian , 2020. "Addressing technical challenges in 100% variable inverter‐based renewable energy power systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.
    11. Johnson, Samuel C. & Papageorgiou, Dimitri J. & Mallapragada, Dharik S. & Deetjen, Thomas A. & Rhodes, Joshua D. & Webber, Michael E., 2019. "Evaluating rotational inertia as a component of grid reliability with high penetrations of variable renewable energy," Energy, Elsevier, vol. 180(C), pages 258-271.
    12. Yeganefar, Ali & Amin-Naseri, Mohammad Reza & Sheikh-El-Eslami, Mohammad Kazem, 2020. "Improvement of representative days selection in power system planning by incorporating the extreme days of the net load to take account of the variability and intermittency of renewable resources," Applied Energy, Elsevier, vol. 272(C).
    13. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    14. Pavičević, Matija & Mangipinto, Andrea & Nijs, Wouter & Lombardi, Francesco & Kavvadias, Konstantinos & Jiménez Navarro, Juan Pablo & Colombo, Emanuela & Quoilin, Sylvain, 2020. "The potential of sector coupling in future European energy systems: Soft linking between the Dispa-SET and JRC-EU-TIMES models," Applied Energy, Elsevier, vol. 267(C).
    15. Pfenninger, Stefan, 2017. "Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability," Applied Energy, Elsevier, vol. 197(C), pages 1-13.
    16. Jayadev, Gopika & Leibowicz, Benjamin D. & Kutanoglu, Erhan, 2020. "U.S. electricity infrastructure of the future: Generation and transmission pathways through 2050," Applied Energy, Elsevier, vol. 260(C).
    17. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Helistö, Niina & Kiviluoma, Juha & Reittu, Hannu, 2020. "Selection of representative slices for generation expansion planning using regular decomposition," Energy, Elsevier, vol. 211(C).
    19. Wogrin, S. & Tejada-Arango, D. & Delikaraoglou, S. & Botterud, A., 2020. "Assessing the impact of inertia and reactive power constraints in generation expansion planning," Applied Energy, Elsevier, vol. 280(C).
    20. Nycander, Elis & Söder, Lennart & Olauson, Jon & Eriksson, Robert, 2020. "Curtailment analysis for the Nordic power system considering transmission capacity, inertia limits and generation flexibility," Renewable Energy, Elsevier, vol. 152(C), pages 942-960.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morales-España, Germán & Nycander, Elis & Sijm, Jos, 2021. "Reducing CO2 emissions by curtailing renewables: Examples from optimal power system operation," Energy Economics, Elsevier, vol. 99(C).
    2. Sajad Aliakbari Sani & Olivier Bahn & Erick Delage & Rinel Foguen Tchuendom, 2022. "Robust Integration of Electric Vehicles Charging Load in Smart Grid’s Capacity Expansion Planning," Dynamic Games and Applications, Springer, vol. 12(3), pages 1010-1041, September.
    3. Finke, Jonas & Bertsch, Valentin, 2023. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," Applied Energy, Elsevier, vol. 332(C).
    4. Lindroos, Tomi J. & Mäki, Elina & Koponen, Kati & Hannula, Ilkka & Kiviluoma, Juha & Raitila, Jyrki, 2021. "Replacing fossil fuels with bioenergy in district heating – Comparison of technology options," Energy, Elsevier, vol. 231(C).
    5. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    6. Göke, Leonard & Weibezahn, Jens & Kendziorski, Mario, 2023. "How flexible electrification can integrate fluctuating renewables," Energy, Elsevier, vol. 278(PA).
    7. Raycheva, Elena & Gjorgiev, Blazhe & Hug, Gabriela & Sansavini, Giovanni & Schaffner, Christian, 2023. "Risk-informed coordinated generation and transmission system expansion planning: A net-zero scenario of Switzerland in the European context," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
    3. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    4. Hoffmann, Maximilian & Kotzur, Leander & Stolten, Detlef, 2022. "The Pareto-optimal temporal aggregation of energy system models," Applied Energy, Elsevier, vol. 315(C).
    5. Gonzato, Sebastian & Bruninx, Kenneth & Delarue, Erik, 2021. "Long term storage in generation expansion planning models with a reduced temporal scope," Applied Energy, Elsevier, vol. 298(C).
    6. Helistö, Niina & Kiviluoma, Juha & Reittu, Hannu, 2020. "Selection of representative slices for generation expansion planning using regular decomposition," Energy, Elsevier, vol. 211(C).
    7. Göke, Leonard & Kendziorski, Mario, 2022. "Adequacy of time-series reduction for renewable energy systems," Energy, Elsevier, vol. 238(PA).
    8. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Energy, Elsevier, vol. 290(C).
    9. Thomas Heggarty & Jean-Yves Bourmaud & Robin Girard & Georges Kariniotakis, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Post-Print hal-04383397, HAL.
    10. Klemm, Christian & Wiese, Frauke & Vennemann, Peter, 2023. "Model-based run-time and memory reduction for a mixed-use multi-energy system model with high spatial resolution," Applied Energy, Elsevier, vol. 334(C).
    11. Ikäheimo, Jussi & Weiss, Robert & Kiviluoma, Juha & Pursiheimo, Esa & Lindroos, Tomi J., 2022. "Impact of power-to-gas on the cost and design of the future low-carbon urban energy system," Applied Energy, Elsevier, vol. 305(C).
    12. Prina, Matteo Giacomo & Nastasi, Benedetto & Groppi, Daniele & Misconel, Steffi & Garcia, Davide Astiaso & Sparber, Wolfram, 2022. "Comparison methods of energy system frameworks, models and scenario results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Gorman, Nicholas & MacGill, Iain & Bruce, Anna, 2024. "Re-dispatch simplification analysis: Confirmation holism and assessing the impact of simplifications on energy system model performance," Applied Energy, Elsevier, vol. 365(C).
    14. Hilbers, Adriaan P. & Brayshaw, David J. & Gandy, Axel, 2023. "Reducing climate risk in energy system planning: A posteriori time series aggregation for models with storage," Applied Energy, Elsevier, vol. 334(C).
    15. Jain, A. & Yamujala, S. & Gaur, A. & Das, P. & Bhakar, R. & Mathur, J., 2023. "Power sector decarbonization planning considering renewable resource variability and system operational constraints," Applied Energy, Elsevier, vol. 331(C).
    16. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    17. Kittel, Martin & Hobbie, Hannes & Dierstein, Constantin, 2022. "Temporal aggregation of time series to identify typical hourly electricity system states: A systematic assessment of relevant cluster algorithms," Energy, Elsevier, vol. 247(C).
    18. Yeganefar, Ali & Amin-Naseri, Mohammad Reza & Sheikh-El-Eslami, Mohammad Kazem, 2020. "Improvement of representative days selection in power system planning by incorporating the extreme days of the net load to take account of the variability and intermittency of renewable resources," Applied Energy, Elsevier, vol. 272(C).
    19. Boldrini, A. & Jiménez Navarro, J.P. & Crijns-Graus, W.H.J. & van den Broek, M.A., 2022. "The role of district heating systems to provide balancing services in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2022. "A multi-objective approach to determine time series aggregation strategies for optimal design of multi-energy systems," Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.