IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9591-d446693.html
   My bibliography  Save this article

Application of Neuro-Fuzzy Controller to Replace SMIB and Interconnected Multi-Machine Power System Stabilizers

Author

Listed:
  • Aliyu Sabo

    (Advanced Lightning and Power Energy System (ALPER), Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
    Department of Electrical and Electronic Engineering, Nigerian Defence Academy, P.M.B. 2109 Kaduna, Nigeria)

  • Noor Izzri Abdul Wahab

    (Advanced Lightning and Power Energy System (ALPER), Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia)

  • Mohammad Lutfi Othman

    (Advanced Lightning and Power Energy System (ALPER), Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia)

  • Mai Zurwatul Ahlam Mohd Jaffar

    (Department of Mathematics, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia)

  • Hakan Acikgoz

    (Department of Electrical Electronics Engineering, Faculty of Engineering and Natural Sciences, Gaziantep Islam Science and Technology University, 27010 Gaziantep, Turkey)

  • Hamzeh Beiranvand

    (Department of Electrical Engineering, Lorestan University, Khoramabad 68151-44316, Iran)

Abstract

In this research, an effective application and performance assessment of the Neuro-Fuzzy Controller (NFC) damping controller is designed to replace a single machine infinite bus (SMIB) power system stabilizer (PSS), and coordinated multi PSSs in large interconnected power systems are presented. The limitation of the conventional PSSs on SMIB and interconnected multi-machine test power systems are exposed and disclosed by the proposed NFC stabilizer. The NFC is a nonlinear robust controller which does not require a mathematical model of the test power system to be controlled, unlike the conventional PSSs’ damping controller. The Proposed NFC is designed to improve the stability of SMIB, an interconnected IEEE 3-machine, 9-bus power system, and an interconnected two-area 10-machine system of 39-bus New England IEEE test power system under multiple operating conditions. The proposed NFC damping controller performance is compared with the conventional PSS damping controller to confirm the capability of the proposed stabilizer and realize an improved system stability enhancement. The conventional PSSs’ design problem is transformed into an optimization problem where an eigenvalue-based objective function is developed and applied to design the SMIB-PSS and the interconnected multi-machine PSSs. The time-domain phasor simulation was done in the SIMULINK domain, and the simulation results show that the transient responses of the system rise time, settling time, peak time, and peak magnitude were all impressively improved by an acceptable amount for all the test system with the proposed NFC stabilizer. Thus, the NFC was able to effectively control the LFOs and produce an enhanced performance compared to the conventional PSS damping controller. Similarly, the result validates the effectiveness of the proposed NFC damping controller for LFO control, which demonstrates more robustness and efficiency than the classical PSS damping controller. Therefore, the application and performance of the NFC has appeared as a promising method and can be considered as a remarkable method for the optimal design damping stabilizer for small and large power systems.

Suggested Citation

  • Aliyu Sabo & Noor Izzri Abdul Wahab & Mohammad Lutfi Othman & Mai Zurwatul Ahlam Mohd Jaffar & Hakan Acikgoz & Hamzeh Beiranvand, 2020. "Application of Neuro-Fuzzy Controller to Replace SMIB and Interconnected Multi-Machine Power System Stabilizers," Sustainability, MDPI, vol. 12(22), pages 1-42, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9591-:d:446693
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9591/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9591/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yifei Wang & Youxin Yuan, 2019. "Inertia Provision and Small Signal Stability Analysis of a Wind-Power Generation System Using Phase-Locked Synchronized Equation," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    2. Heung-Jae Lee & Seong-Su Jhang & Won-Kun Yu & Jung-Hyun Oh, 2019. "Artificial Neural Network Control of Battery Energy Storage System to Damp-Out Inter-Area Oscillations in Power Systems," Energies, MDPI, vol. 12(17), pages 1-13, September.
    3. Kwan-Shik Shim & Seon-Ju Ahn & Joon-Ho Choi, 2017. "Synchronization of Low-Frequency Oscillation in Power Systems," Energies, MDPI, vol. 10(4), pages 1-11, April.
    4. Bingtuan Gao & Chaopeng Xia & Ning Chen & Khalid Mehmood Cheema & Libin Yang & Chunlai Li, 2017. "Virtual Synchronous Generator Based Auxiliary Damping Control Design for the Power System with Renewable Generation," Energies, MDPI, vol. 10(8), pages 1-21, August.
    5. Wenping Hu & Jifeng Liang & Yitao Jin & Fuzhang Wu, 2018. "Model of Power System Stabilizer Adapting to Multi-Operating Conditions of Local Power Grid and Parameter Tuning," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    6. Florindo A. de C. Ayres Junior & Carlos T. da Costa Junior & Renan L. P. de Medeiros & Walter Barra Junior & Cleonor C. das Neves & Marcelo K. Lenzi & Gabriela De M. Veroneze, 2018. "A Fractional Order Power System Stabilizer Applied on a Small-Scale Generation System," Energies, MDPI, vol. 11(8), pages 1-20, August.
    7. Jian Zuo & Yinhong Li & Dongyuan Shi & Xianzhong Duan, 2017. "Simultaneous Robust Coordinated Damping Control of Power System Stabilizers (PSSs), Static Var Compensator (SVC) and Doubly-Fed Induction Generator Power Oscillation Dampers (DFIG PODs) in Multimachin," Energies, MDPI, vol. 10(4), pages 1-23, April.
    8. Humberto Verdejo & Rodrigo Torres & Victor Pino & Wolfgang Kliemann & Cristhian Becker & José Delpiano, 2019. "Tuning of Controllers in Power Systems Using a Heuristic-Stochastic Approach," Energies, MDPI, vol. 12(12), pages 1-25, June.
    9. Ziquan Liu & Wei Yao & Jinyu Wen, 2017. "Enhancement of Power System Stability Using a Novel Power System Stabilizer with Large Critical Gain," Energies, MDPI, vol. 10(4), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aliyu Sabo & Theophilus Ebuka Odoh & Hossien Shahinzadeh & Zahra Azimi & Majid Moazzami, 2023. "Implementing Optimization Techniques in PSS Design for Multi-Machine Smart Power Systems: A Comparative Study," Energies, MDPI, vol. 16(5), pages 1-25, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michał Izdebski & Robert Małkowski & Piotr Miller, 2022. "New Performance Indices for Power System Stabilizers," Energies, MDPI, vol. 15(24), pages 1-23, December.
    2. Aliyu Sabo & Bashir Yunus Kolapo & Theophilus Ebuka Odoh & Musa Dyari & Noor Izzri Abdul Wahab & Veerapandiyan Veerasamy, 2022. "Solar, Wind and Their Hybridization Integration for Multi-Machine Power System Oscillation Controllers Optimization: A Review," Energies, MDPI, vol. 16(1), pages 1-32, December.
    3. Abdul Waheed Khawaja & Nor Azwan Mohamed Kamari & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Design of a Damping Controller Using the SCA Optimization Technique for the Improvement of Small Signal Stability of a Single Machine Connected to an Infinite Bus System," Energies, MDPI, vol. 14(11), pages 1-20, May.
    4. Xingbao Ju & Ping Zhao & Haishun Sun & Wei Yao & Jinyu Wen, 2017. "Nonlinear Synergetic Governor Controllers for Steam Turbine Generators to Enhance Power System Stability," Energies, MDPI, vol. 10(8), pages 1-16, July.
    5. Farag Ali El-Sheikhi & Hisham M. Soliman & Razzaqul Ahshan & Eklas Hossain, 2021. "Regional Pole Placers of Power Systems under Random Failures/Repair Markov Jumps," Energies, MDPI, vol. 14(7), pages 1-14, April.
    6. Mariano G. Ippolito & Rossano Musca & Eleonora Riva Sanseverino & Gaetano Zizzo, 2022. "Frequency Dynamics in Fully Non-Synchronous Electrical Grids: A Case Study of an Existing Island," Energies, MDPI, vol. 15(6), pages 1-24, March.
    7. Xiangwu Yan & Jiajia Li & Ling Wang & Shuaishuai Zhao & Tie Li & Zhipeng Lv & Ming Wu, 2018. "Adaptive-MPPT-Based Control of Improved Photovoltaic Virtual Synchronous Generators," Energies, MDPI, vol. 11(7), pages 1-18, July.
    8. Haris E. Psillakis & Antonio T. Alexandridis, 2020. "Coordinated Excitation and Static Var Compensator Control with Delayed Feedback Measurements in SGIB Power Systems," Energies, MDPI, vol. 13(9), pages 1-18, May.
    9. Magdalena Tutak & Jarosław Brodny, 2019. "Forecasting Methane Emissions from Hard Coal Mines Including the Methane Drainage Process," Energies, MDPI, vol. 12(20), pages 1-28, October.
    10. Ping He & Seyed Ali Arefifar & Congshan Li & Fushuan Wen & Yuqi Ji & Yukun Tao, 2019. "Enhancing Oscillation Damping in an Interconnected Power System with Integrated Wind Farms Using Unified Power Flow Controller," Energies, MDPI, vol. 12(2), pages 1-16, January.
    11. Adrian Nocoń & Stefan Paszek, 2023. "A Comprehensive Review of Power System Stabilizers," Energies, MDPI, vol. 16(4), pages 1-32, February.
    12. Md Asaduzzaman Shobug & Nafis Ahmed Chowdhury & Md Alamgir Hossain & Mohammad J. Sanjari & Junwei Lu & Fuwen Yang, 2024. "Virtual Inertia Control for Power Electronics-Integrated Power Systems: Challenges and Prospects," Energies, MDPI, vol. 17(11), pages 1-33, June.
    13. Jong Ju Kim & June Ho Park, 2021. "A Novel Structure of a Power System Stabilizer for Microgrids," Energies, MDPI, vol. 14(4), pages 1-33, February.
    14. Maksim Dli & Andrey Puchkov & Artem Vasiliev & Elena Kirillova & Yuri Selyavskiy & Nikolay Kulyasov, 2021. "Intelligent Control System Architecture for Phosphorus Production from Apatite-Nepheline Ore Waste," Energies, MDPI, vol. 14(20), pages 1-13, October.
    15. Jun Dong & Shengnan Li & Shuijun Wu & Tingyi He & Bo Yang & Hongchun Shu & Jilai Yu, 2017. "Nonlinear Observer-Based Robust Passive Control of Doubly-Fed Induction Generators for Power System Stability Enhancement via Energy Reshaping," Energies, MDPI, vol. 10(8), pages 1-16, July.
    16. Tawfik Guesmi & Badr M. Alshammari & Yasser Almalaq & Ayoob Alateeq & Khalid Alqunun, 2021. "New Coordinated Tuning of SVC and PSSs in Multimachine Power System Using Coyote Optimization Algorithm," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    17. Ming Yang & Wu Cao & Tingjun Lin & Jianfeng Zhao & Wei Li, 2021. "Low Frequency Damping Control for Power Electronics-Based AC Grid Using Inverters with Built-In PSS," Energies, MDPI, vol. 14(9), pages 1-18, April.
    18. Mahdi Saadatmand & Gevork B. Gharehpetian & Innocent Kamwa & Pierluigi Siano & Josep M. Guerrero & Hassan Haes Alhelou, 2021. "A Survey on FOPID Controllers for LFO Damping in Power Systems Using Synchronous Generators, FACTS Devices and Inverter-Based Power Plants," Energies, MDPI, vol. 14(18), pages 1-26, September.
    19. Antonio T. Alexandridis, 2019. "Studying State Convergence of Input-to-State Stable Systems with Applications to Power System Analysis," Energies, MDPI, vol. 13(1), pages 1-24, December.
    20. Vijay Mohale & Thanga Raj Chelliah, 2022. "Impact of Fixed/Variable Speed Hydro, Wind, and Photovoltaic on Sub-Synchronous Torsional Oscillation—A Review," Sustainability, MDPI, vol. 15(1), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9591-:d:446693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.