IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6667-d1241773.html
   My bibliography  Save this article

Virtual Inertia Implemented by Quasi-Z-Source Power Converter for Distributed Power System

Author

Listed:
  • Yitao Liu

    (College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China)

  • Hongle Chen

    (College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China)

  • Runqiu Fang

    (College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China)

Abstract

This paper proposes a novel virtual inertia control strategy for distributed power systems with high penetration of renewable energy sources. The strategy uses a quasi-Z-source power converter to emulate the inertia response of a synchronous generator by regulating the DC-link capacitor voltage in proportion to the grid frequency deviation. This paper analyzes the effect of inertia on the frequency regulation of a single-area power system and derives the parameter design method and limitations of the virtual inertia. The paper also introduces the working principle and modulation technique of the quasi-Z-source power converter and presents the virtual inertia control scheme based on a voltage-frequency controller. The paper verifies the feasibility and effectiveness of the proposed strategy through MATLAB/Simulink simulations and dSPACE semi-physical experiments. The results show that the proposed strategy can reduce the frequency deviation and rate of change of frequency (RoCoF) by 20% and 50%, respectively, under load disturbances. The paper demonstrates that the quasi-Z-source power converter can provide flexible and adjustable virtual inertia for distributed power systems without additional energy storage devices.

Suggested Citation

  • Yitao Liu & Hongle Chen & Runqiu Fang, 2023. "Virtual Inertia Implemented by Quasi-Z-Source Power Converter for Distributed Power System," Energies, MDPI, vol. 16(18), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6667-:d:1241773
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6667/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6667/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Myada Shadoul & Razzaqul Ahshan & Rashid S. AlAbri & Abdullah Al-Badi & Mohammed Albadi & Mohsin Jamil, 2022. "A Comprehensive Review on a Virtual-Synchronous Generator: Topologies, Control Orders and Techniques, Energy Storages, and Applications," Energies, MDPI, vol. 15(22), pages 1-27, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Asaduzzaman Shobug & Nafis Ahmed Chowdhury & Md Alamgir Hossain & Mohammad J. Sanjari & Junwei Lu & Fuwen Yang, 2024. "Virtual Inertia Control for Power Electronics-Integrated Power Systems: Challenges and Prospects," Energies, MDPI, vol. 17(11), pages 1-33, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marinka Baghdasaryan & Azatuhi Ulikyan & Arusyak Arakelyan, 2023. "Application of an Artificial Neural Network for Detecting, Classifying, and Making Decisions about Asymmetric Short Circuits in a Synchronous Generator," Energies, MDPI, vol. 16(6), pages 1-19, March.
    2. Yayao Zhang & Miao Han & Meng Zhan, 2023. "The Concept and Understanding of Synchronous Stability in Power Electronic-Based Power Systems," Energies, MDPI, vol. 16(6), pages 1-15, March.
    3. Grzegorz Drałus & Damian Mazur & Jacek Kusznier & Jakub Drałus, 2023. "Application of Artificial Intelligence Algorithms in Multilayer Perceptron and Elman Networks to Predict Photovoltaic Power Plant Generation," Energies, MDPI, vol. 16(18), pages 1-23, September.
    4. Daniel Carletti & Thiago Amorim & Lucas Encarnação, 2023. "Virtual Armature Resistance-Based Control for Fault Current Limiting in a High-Order VSG and the Impact on Its Transient Stability," Energies, MDPI, vol. 16(12), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6667-:d:1241773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.