IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipbs0306261923015908.html
   My bibliography  Save this article

A predictive tool for power system operators to ensure frequency stability for power grids with renewable energy integration

Author

Listed:
  • Sattar, Faisal
  • Ghosh, Sudipta
  • Isbeih, Younes J.
  • El Moursi, Mohamed Shawky
  • Al Durra, Ahmed
  • El Fouly, Tarek H.M.

Abstract

The increased penetration levels of renewable energy resources (RESs) transform the power generation schema into one that is more susceptible to changes due to weather conditions, complicated load profiles, and reduced inertia levels. One of the main challenges that power grids can encounter under varying and low system inertia (SI) is poor frequency response (FR). Therefore, this paper proposes a novel online tool for assessing, predicting, and enhancing the frequency stability (FS) of power systems with renewable power generation and energy storage systems (ESS). Firstly, the tool provides accurate tracking of the SI in real-time settings using recursive least square identification and Kalman filtering to provide accurate and computationally efficient results. Secondly, the tool estimates the FR of the whole system in a virtual environment for different contingencies and inertia levels. The accuracy of the FR is improved by classifying the frequency response models (FRMs) based on the SI levels. Lastly, the proposed tool computes the optimal additional estimated reserve power (ERP) required from PV and battery energy storage systems (BESS) to provide inertial and primary frequency support to the power grid at the onset of a contingency. In addition, a reserve power allocation and load-shedding strategies are proposed and implemented to dynamically adjust the reserve power of PV power plants. This dynamic control of the PV power plant reserve capacity guarantees the availability of adequate reserves for addressing unforeseen systems contingencies. Moreover, dedicated FR controllers for PV and BESS are employed to emulate the synchronous machine’s inertial response (IR) and primary frequency control (PFC). The performance of the proposed tool and the FR controllers are tested and validated on a generic power grid and the IEEE 39 bus system using MATLAB Simulink and the OPAL-RT real-time simulation software.

Suggested Citation

  • Sattar, Faisal & Ghosh, Sudipta & Isbeih, Younes J. & El Moursi, Mohamed Shawky & Al Durra, Ahmed & El Fouly, Tarek H.M., 2024. "A predictive tool for power system operators to ensure frequency stability for power grids with renewable energy integration," Applied Energy, Elsevier, vol. 353(PB).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015908
    DOI: 10.1016/j.apenergy.2023.122226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923015908
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Chunyang & Andersen, Peter Bach & Træholt, Chresten & Hashemi, Seyedmostafa, 2023. "Grid-connected battery energy storage system: a review on application and integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    3. Zhang, S. & Mishra, Y. & Shahidehpour, M., 2017. "Utilizing distributed energy resources to support frequency regulation services," Applied Energy, Elsevier, vol. 206(C), pages 1484-1494.
    4. Wei Li & Hui Ren & Ping Chen & Yanyang Wang & Hailong Qi, 2020. "Key Operational Issues on the Integration of Large-Scale Solar Power Generation—A Literature Review," Energies, MDPI, vol. 13(22), pages 1-25, November.
    5. Ahmed, Faraedoon & Al Kez, Dlzar & McLoone, Seán & Best, Robert James & Cameron, Ché & Foley, Aoife, 2023. "Dynamic grid stability in low carbon power systems with minimum inertia," Renewable Energy, Elsevier, vol. 210(C), pages 486-506.
    6. Mejia-Ruiz, Gabriel E. & Paternina, Mario R. Arrieta & Segundo Sevilla, Felix Rafael & Korba, Petr, 2022. "Fast hierarchical coordinated controller for distributed battery energy storage systems to mitigate voltage and frequency deviations," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rao, Amar & Kumar, Satish & Karim, Sitara, 2024. "Accelerating renewables: Unveiling the role of green energy markets," Applied Energy, Elsevier, vol. 366(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tengxi & Xin, Li & Wang, Shunjiang & Guo, Ren & Wang, Wentao & Cui, Jia & Wang, Peng, 2024. "A novel approach of energy and reserve scheduling for hybrid power systems: Frequency security constraints," Applied Energy, Elsevier, vol. 361(C).
    2. Li, Zhihao & Yang, Lun & Xu, Yinliang, 2023. "A dynamics-constrained method for distributed frequency regulation in low-inertia power systems," Applied Energy, Elsevier, vol. 344(C).
    3. Oluwafemi Emmanuel Oni & Omowunmi Mary Longe, 2023. "Analysis of Secondary Controller on MTDC Link with Solar PV Integration for Inter-Area Power Oscillation Damping," Energies, MDPI, vol. 16(17), pages 1-18, August.
    4. Dong, Zhen & Li, Zhongguo & Liang, Zhongchao & Xu, Yiqiao & Ding, Zhengtao, 2021. "Distributed neural network enhanced power generation strategy of large-scale wind power plant for power expansion," Applied Energy, Elsevier, vol. 303(C).
    5. Emmanuel Ebinyu & Omar Abdel-Rahim & Diaa-Eldin A. Mansour & Masahito Shoyama & Sobhy M. Abdelkader, 2023. "Grid-Forming Control: Advancements towards 100% Inverter-Based Grids—A Review," Energies, MDPI, vol. 16(22), pages 1-45, November.
    6. Pompodakis, Evangelos E. & Kryonidis, Georgios C. & Karapidakis, Emmanuel S., 2023. "Volt/Var control and energy management in non-interconnected insular networks with multiple hybrid power plants," Applied Energy, Elsevier, vol. 331(C).
    7. Jaehyun Yoo & Yongju Son & Myungseok Yoon & Sungyun Choi, 2023. "A Wind Power Scenario Generation Method Based on Copula Functions and Forecast Errors," Sustainability, MDPI, vol. 15(23), pages 1-15, December.
    8. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    9. Ahmad Amiruddin & Roger Dargaville & Ross Gawler, 2024. "Optimal Integration of Renewable Energy, Energy Storage, and Indonesia’s Super Grid," Energies, MDPI, vol. 17(20), pages 1-29, October.
    10. Wang, Qi & Miao, Cairan & Tang, Yi, 2022. "Power shortage support strategies considering unified gas-thermal inertia in an integrated energy system," Applied Energy, Elsevier, vol. 328(C).
    11. Shengqi Zhang & Yateendra Mishra & Bei Yuan & Jianfeng Zhao & Mohammad Shahidehpour, 2018. "Primary Frequency Controller with Prediction-Based Droop Coefficient for Wind-Storage Systems under Spot Market Rules," Energies, MDPI, vol. 11(9), pages 1-19, September.
    12. Adrian Nocoń & Stefan Paszek, 2023. "A Comprehensive Review of Power System Stabilizers," Energies, MDPI, vol. 16(4), pages 1-32, February.
    13. Matheus Schramm Dall’Asta & Telles Brunelli Lazzarin, 2024. "A Review of Fast Power-Reserve Control Techniques in Grid-Connected Wind Energy Conversion Systems," Energies, MDPI, vol. 17(2), pages 1-29, January.
    14. Md Asaduzzaman Shobug & Nafis Ahmed Chowdhury & Md Alamgir Hossain & Mohammad J. Sanjari & Junwei Lu & Fuwen Yang, 2024. "Virtual Inertia Control for Power Electronics-Integrated Power Systems: Challenges and Prospects," Energies, MDPI, vol. 17(11), pages 1-33, June.
    15. Wang, Sen & Li, Fengting & Zhang, Gaohang & Yin, Chunya, 2023. "Analysis of energy storage demand for peak shaving and frequency regulation of power systems with high penetration of renewable energy," Energy, Elsevier, vol. 267(C).
    16. Changgang Li & Zhi Hang & Hengxu Zhang & Qi Guo & Yihua Zhu & Vladimir Terzija, 2020. "Evaluation of DFIGs’ Primary Frequency Regulation Capability for Power Systems with High Penetration of Wind Power," Energies, MDPI, vol. 13(23), pages 1-19, November.
    17. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    18. Désiré D. Rasolomampionona & Michał Połecki & Krzysztof Zagrajek & Wiktor Wróblewski & Marcin Januszewski, 2024. "A Comprehensive Review of Load Frequency Control Technologies," Energies, MDPI, vol. 17(12), pages 1-74, June.
    19. Ali Jawad Alrubaie & Mohamed Salem & Khalid Yahya & Mahmoud Mohamed & Mohamad Kamarol, 2023. "A Comprehensive Review of Electric Vehicle Charging Stations with Solar Photovoltaic System Considering Market, Technical Requirements, Network Implications, and Future Challenges," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    20. Fauzan Hanif Jufri & Jaesung Jung & Budi Sudiarto & Iwa Garniwa, 2023. "Development of Virtual Inertia Control with State-of-Charge Recovery Strategy Using Coordinated Secondary Frequency Control for Optimized Battery Capacity in Isolated Low Inertia Grid," Energies, MDPI, vol. 16(14), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.