IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs0306261924019780.html
   My bibliography  Save this article

Robust scheduling of a pulp and paper mill considering flexibility provision from steam power generation

Author

Listed:
  • Wu, Chuanshen
  • Zhou, Yue
  • Gan, Wei
  • Wu, Jianzhong

Abstract

The production scheduling and flexibility provision analysis are of great importance for industrial facilities to provide support for the main power grid. This study proposes a comprehensive scheduling model for an industrial pulp and paper (P&P) mill that considers the flexibility provision from steam power generation. In this model, the internal relationships between the production and consumption of electricity, steam, and pulp in the operational processes of the P&P mill are investigated. Meanwhile, the available flexibility of steam power generation is quantified and further enhanced for participation in the manual frequency restoration reserve (MFRR) market. Furthermore, a robust scheduling model that uses support vector clustering (SVC) technology is proposed to assess the impact of uncertainties in steam temperature and pressure on the available flexibility of steam power generation, thereby reducing the probability of failing to provide the contracted flexibility for MFRR. Simulation results demonstrate that the comprehensive scheduling model significantly increases the available flexibility of steam power generation for MFRR, resulting in a daily revenue increase of $1839.8. Moreover, a balance between the revenue obtained from the MFRR market and the probability of economic penalties incurred for failing to meet the contracted flexibility is achieved by comparing different levels of conservatism in the robust scheduling model.

Suggested Citation

  • Wu, Chuanshen & Zhou, Yue & Gan, Wei & Wu, Jianzhong, 2025. "Robust scheduling of a pulp and paper mill considering flexibility provision from steam power generation," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019780
    DOI: 10.1016/j.apenergy.2024.124595
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924019780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helin, Kristo & Käki, Anssi & Zakeri, Behnam & Lahdelma, Risto & Syri, Sanna, 2017. "Economic potential of industrial demand side management in pulp and paper industry," Energy, Elsevier, vol. 141(C), pages 1681-1694.
    2. Coatalem, Martin & Mazauric, Vincent & Le Pape-Gardeux, Claude & Maïzi, Nadia, 2017. "Optimizing industries’ power generation assets on the electricity markets," Applied Energy, Elsevier, vol. 185(P2), pages 1744-1756.
    3. Merten, Michael & Rücker, Fabian & Schoeneberger, Ilka & Sauer, Dirk Uwe, 2020. "Automatic frequency restoration reserve market prediction: Methodology and comparison of various approaches," Applied Energy, Elsevier, vol. 268(C).
    4. Shen, Feifei & Zhao, Liang & Du, Wenli & Zhong, Weimin & Qian, Feng, 2020. "Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    5. Waldemarsson, Martin & Lidestam, Helene & Karlsson, Magnus, 2017. "How energy price changes can affect production- and supply chain planning – A case study at a pulp company," Applied Energy, Elsevier, vol. 203(C), pages 333-347.
    6. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    7. Bogdanov, Dmitrii & Gulagi, Ashish & Fasihi, Mahdi & Breyer, Christian, 2021. "Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination," Applied Energy, Elsevier, vol. 283(C).
    8. Herre, Lars & Tomasini, Federica & Paridari, Kaveh & Söder, Lennart & Nordström, Lars, 2020. "Simplified model of integrated paper mill for optimal bidding in energy and reserve markets," Applied Energy, Elsevier, vol. 279(C).
    9. Minh Hung Ho & Faicel Hnaien & Frederic Dugardin, 2021. "Electricity cost minimisation for optimal makespan solution in flow shop scheduling under time-of-use tariffs," International Journal of Production Research, Taylor & Francis Journals, vol. 59(4), pages 1041-1067, February.
    10. Mitra, Sumit & Sun, Lige & Grossmann, Ignacio E., 2013. "Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices," Energy, Elsevier, vol. 54(C), pages 194-211.
    11. Han, Yulin & Zheng, Jingyuan & Luo, Xiaoyan & Qian, Yu & Yang, Siyu, 2023. "Multi-scenario data-driven robust optimisation for industrial steam power systems under uncertainty," Energy, Elsevier, vol. 263(PD).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Herre, Lars & Tomasini, Federica & Paridari, Kaveh & Söder, Lennart & Nordström, Lars, 2020. "Simplified model of integrated paper mill for optimal bidding in energy and reserve markets," Applied Energy, Elsevier, vol. 279(C).
    3. Son, Hyunsoo & Kim, Miae & Kim, Jin-Kuk, 2022. "Sustainable process integration of electrification technologies with industrial energy systems," Energy, Elsevier, vol. 239(PB).
    4. Dowling, Alexander W. & Kumar, Ranjeet & Zavala, Victor M., 2017. "A multi-scale optimization framework for electricity market participation," Applied Energy, Elsevier, vol. 190(C), pages 147-164.
    5. Cantu Rodriguez, Roman & Palacios-Garcia, Emilio J. & Deconinck, Geert, 2024. "Redesign for flexibility through electrification: Multi-objective optimization of the operation of a multi-energy industrial steam network," Applied Energy, Elsevier, vol. 362(C).
    6. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    7. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    8. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Harri Aaltonen & Seppo Sierla & Rakshith Subramanya & Valeriy Vyatkin, 2021. "A Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage," Energies, MDPI, vol. 14(17), pages 1-20, September.
    12. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    13. Shen, Feifei & Zhao, Liang & Wang, Meihong & Du, Wenli & Qian, Feng, 2022. "Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty," Applied Energy, Elsevier, vol. 307(C).
    14. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    15. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    16. David Firnando Silalahi & Andrew Blakers & Cheng Cheng, 2023. "100% Renewable Electricity in Indonesia," Energies, MDPI, vol. 17(1), pages 1-22, December.
    17. Mehar Ullah & Daniel Gutierrez-Rojas & Eero Inkeri & Tero Tynjälä & Pedro H. J. Nardelli, 2022. "Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    18. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    19. Deetjen, Thomas A. & Vitter, J. Scott & Reimers, Andrew S. & Webber, Michael E., 2018. "Optimal dispatch and equipment sizing of a residential central utility plant for improving rooftop solar integration," Energy, Elsevier, vol. 147(C), pages 1044-1059.
    20. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.