Review on Mono and Hybrid Nanofluids: Preparation, Properties, Investigation, and Applications in IC Engines and Heat Transfer
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Parameshwaran, R. & Deepak, K. & Saravanan, R. & Kalaiselvam, S., 2014. "Preparation, thermal and rheological properties of hybrid nanocomposite phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 115(C), pages 320-330.
- Taghizadeh-Tabari, Zohre & Zeinali Heris, Saeed & Moradi, Maryam & Kahani, Mostafa, 2016. "The study on application of TiO2/water nanofluid in plate heat exchanger of milk pasteurization industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1318-1326.
- Sajid, Muhammad Usman & Ali, Hafiz Muhammad, 2019. "Recent advances in application of nanofluids in heat transfer devices: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 556-592.
- Sahin, Ahmet Z. & Uddin, Mohammed Ayaz & Yilbas, Bekir S. & Al-Sharafi, Abdullah, 2020. "Performance enhancement of solar energy systems using nanofluids: An updated review," Renewable Energy, Elsevier, vol. 145(C), pages 1126-1148.
- Dhinesh Kumar, D. & Valan Arasu, A., 2018. "A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1669-1689.
- Wu, Shenyi & Rincon Ortiz, Camilo, 2020. "Experimental investigation of the effect of magnetic field on vapour absorption with LiBr–H2O nanofluid," Energy, Elsevier, vol. 193(C).
- Ewelina Radomska & Lukasz Mika & Karol Sztekler, 2020. "The Impact of Additives on the Main Properties of Phase Change Materials," Energies, MDPI, vol. 13(12), pages 1-34, June.
- Sharafeldin, M.A. & Gróf, Gyula, 2019. "Efficiency of evacuated tube solar collector using WO3/Water nanofluid," Renewable Energy, Elsevier, vol. 134(C), pages 453-460.
- Rosen, Marc A. & Dincer, Ibrahim & Kanoglu, Mehmet, 2008. "Role of exergy in increasing efficiency and sustainability and reducing environmental impact," Energy Policy, Elsevier, vol. 36(1), pages 128-137, January.
- Sara Rostami & Amin Shahsavar & Gholamreza Kefayati & Aysan Shahsavar Goldanlou, 2020. "Energy and Exergy Analysis of Using Turbulator in a Parabolic Trough Solar Collector Filled with Mesoporous Silica Modified with Copper Nanoparticles Hybrid Nanofluid," Energies, MDPI, vol. 13(11), pages 1-16, June.
- Kumar, Vikas & Tiwari, Arun Kumar & Ghosh, Subrata Kumar, 2016. "Effect of variable spacing on performance of plate heat exchanger using nanofluids," Energy, Elsevier, vol. 114(C), pages 1107-1119.
- Sundar, L. Syam & Sharma, K.V. & Singh, Manoj K. & Sousa, A.C.M., 2017. "Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 185-198.
- Xiao, Xin & Jia, Hongwei & Wen, Dongsheng & Zhao, Xudong, 2020. "Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite," Energy, Elsevier, vol. 192(C).
- Mahyari, Amirhossein Ansari & Karimipour, Arash & Afrand, Masoud, 2019. "Effects of dispersed added Graphene Oxide-Silicon Carbide nanoparticles to present a statistical formulation for the mixture thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 98-112.
- Zhou, Yuekuan & Zheng, Siqian, 2020. "Multi-level uncertainty optimisation on phase change materials integrated renewable systems with hybrid ventilations and active cooling," Energy, Elsevier, vol. 202(C).
- Sekar, Aiswarya Devi & Jayabalan, Tamilmani & Muthukumar, Harshiny & Chandrasekaran, Nivedhini Iswarya & Mohamed, Samsudeen Naina & Matheswaran, Manickam, 2019. "Enhancing power generation and treatment of dairy waste water in microbial fuel cell using Cu-doped iron oxide nanoparticles decorated anode," Energy, Elsevier, vol. 172(C), pages 173-180.
- Mubashar Arshad & Azad Hussain & Ali Hassan & Hanen Karamti & Piotr Wróblewski & Ilyas Khan & Mulugeta Andualem & Ahmed M. Galal & Ahmed Salem, 2022. "Scrutinization of Slip Due to Lateral Velocity on the Dynamics of Engine Oil Conveying Cupric and Alumina Nanoparticles Subject to Coriolis Force," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-13, September.
- Nur Sabrina Suhaimi & Muhamad Faiz Md Din & Abdul Rashid Abdul Rahman & Mardhiah Hayati Abdul Hamid & Nur Aqilah Mohamad Amin & Wan Fathul Hakim Wan Zamri & Jianli Wang, 2020. "Optimum Electrical and Dielectric Performance of Multi-Walled Carbon Nanotubes Doped Disposed Transformer Oil," Energies, MDPI, vol. 13(12), pages 1-19, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sylwia Wciślik, 2020. "Efficient Stabilization of Mono and Hybrid Nanofluids," Energies, MDPI, vol. 13(15), pages 1-26, July.
- Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
- Fatih Selimefendigil & Hakan F. Oztop & Mikhail A. Sheremet, 2021. "Thermoelectric Generation with Impinging Nano-Jets," Energies, MDPI, vol. 14(2), pages 1-24, January.
- Mashhour A. Alazwari & Mohammad Reza Safaei, 2021. "Non-Isothermal Hydrodynamic Characteristics of a Nanofluid in a Fin-Attached Rotating Tube Bundle," Mathematics, MDPI, vol. 9(10), pages 1-24, May.
- Said, Zafar & El Haj Assad, M. & Hachicha, Ahmed Amine & Bellos, Evangelos & Abdelkareem, Mohammad Ali & Alazaizeh, Duha Zeyad & Yousef, Bashria A.A., 2019. "Enhancing the performance of automotive radiators using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 183-194.
- Sajid, Muhammad Usman & Ali, Hafiz Muhammad, 2019. "Recent advances in application of nanofluids in heat transfer devices: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 556-592.
- Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Zhang, Jizhe, 2021. "Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- He, Ziqiang & Yan, Yunfei & Zhang, Zhien, 2021. "Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review," Energy, Elsevier, vol. 216(C).
- Ambreen, Tehmina & Kim, Man-Hoe, 2020. "Influence of particle size on the effective thermal conductivity of nanofluids: A critical review," Applied Energy, Elsevier, vol. 264(C).
- Pinar Eneren & Yunus Tansu Aksoy & Maria Rosaria Vetrano, 2022. "Experiments on Single-Phase Nanofluid Heat Transfer Mechanisms in Microchannel Heat Sinks: A Review," Energies, MDPI, vol. 15(7), pages 1-21, March.
- Vahidinia, F. & Khorasanizadeh, H. & Aghaei, A., 2023. "Energy, exergy, economic and environmental evaluations of a finned absorber tube parabolic trough collector utilizing hybrid and mono nanofluids and comparison," Renewable Energy, Elsevier, vol. 205(C), pages 185-199.
- Zhang, Ji & Zhu, Xiaowei & Mondejar, Maria E. & Haglind, Fredrik, 2019. "A review of heat transfer enhancement techniques in plate heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 305-328.
- Siti Nur Alwani Salleh & Norfifah Bachok & Ioan Pop, 2021. "Mixed Convection Stagnation Point Flow of a Hybrid Nanofluid Past a Permeable Flat Plate with Radiation Effect," Mathematics, MDPI, vol. 9(21), pages 1-17, October.
- Alvin Kiprono Bett & Saeid Jalilinasrabady, 2021. "Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis," Energies, MDPI, vol. 14(20), pages 1-17, October.
- Jing Bai & Chuang Tu & Jiming Bai, 2024. "Measuring and decomposing Beijing’s energy performance: an energy- and exergy-based perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17617-17633, July.
- Rajendran Prabakaran & Shaji Sidney & Dhasan Mohan Lal & C. Selvam & Sivasankaran Harish, 2019. "Solidification of Graphene-Assisted Phase Change Nanocomposites inside a Sphere for Cold Storage Applications," Energies, MDPI, vol. 12(18), pages 1-16, September.
- He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Shah, Tayyab Raza & Ali, Hafiz Muhammad & Zhou, Chao & Babar, Hamza & Janjua, Muhammad Mansoor & Doranehgard, Mohammad Hossein & Hussain, Abid & Sajjad, Uzair & Wang, Chi-Chuan & Sultan, Muhamad, 2022. "Potential evaluation of water-based ferric oxide (Fe2O3-water) nanocoolant: An experimental study," Energy, Elsevier, vol. 246(C).
- L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
More about this item
Keywords
nanofluids; heat transfer rate; Prandtl number; pressure drop; IC engines;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3189-:d:1113508. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.