IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v521y2019icp98-112.html
   My bibliography  Save this article

Effects of dispersed added Graphene Oxide-Silicon Carbide nanoparticles to present a statistical formulation for the mixture thermal properties

Author

Listed:
  • Mahyari, Amirhossein Ansari
  • Karimipour, Arash
  • Afrand, Masoud

Abstract

This study experimentally investigated the preparation method, stability, measurement, and modeling of the thermal conductivity of water/graphene oxide-silicon carbide nanofluid. In this study, the nanofluid was prepared via a two-stage method. Moreover, the SEM and XRD tests were used to investigate surface and atomic structure of nanoparticles. A probe-type ultrasonic stirrer was used to achieve stability and homogenized distribution of particles in the base fluid. Then, the nanofluid stability was assessed using the DLS test. According to the results, the base fluid contained nano-sized particles. Moreover, the thermal conductivity measurement of the hybrid nanofluid was carried out in the temperature and volume concentration ranges of 25–50 °C and 0.05–1 vol%, respectively. The experimental variables were the nanofluid’s temperature and volume concentration. Results showed that the thermal conductivity of the nanofluid increased with increasing volume concentration and temperature. Although nanoparticle concentration has a greater impact than temperature, changes in thermal conductivity are greater at higher temperatures. The greatest increase in thermal conductivity of nanofluid was 33.2% at the concentration of 1 vol% and temperature of 50 °C. To calculate thermal conductivity of this nanofluid, a highly accurate experimental equation was developed using the laboratory data curve fitting method.

Suggested Citation

  • Mahyari, Amirhossein Ansari & Karimipour, Arash & Afrand, Masoud, 2019. "Effects of dispersed added Graphene Oxide-Silicon Carbide nanoparticles to present a statistical formulation for the mixture thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 98-112.
  • Handle: RePEc:eee:phsmap:v:521:y:2019:i:c:p:98-112
    DOI: 10.1016/j.physa.2019.01.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119300354
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.01.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Goodarzi & M. R. Safaei & A. Karimipour & K. Hooman & M. Dahari & S. N. Kazi & E. Sadeghinezhad, 2014. "Comparison of the Finite Volume and Lattice Boltzmann Methods for Solving Natural Convection Heat Transfer Problems inside Cavities and Enclosures," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-15, February.
    2. Hemmat Esfe, Mohammad & Hajmohammad, Hadi & Toghraie, Davood & Rostamian, Hadi & Mahian, Omid & Wongwises, Somchai, 2017. "Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems," Energy, Elsevier, vol. 137(C), pages 160-171.
    3. Saidur, R. & Leong, K.Y. & Mohammad, H.A., 2011. "A review on applications and challenges of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1646-1668, April.
    4. Karimipour, Arash & D’Orazio, Annunziata & Goodarzi, Marjan, 2018. "Develop the lattice Boltzmann method to simulate the slip velocity and temperature domain of buoyancy forces of FMWCNT nanoparticles in water through a micro flow imposed to the specified heat flux," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 729-745.
    5. Nemati, Maedeh & Shateri Najaf Abady, Ali Reza & Toghraie, Davood & Karimipour, Arash, 2018. "Numerical investigation of the pseudopotential lattice Boltzmann modeling of liquid–vapor for multi-phase flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 65-77.
    6. Karimipour, Arash & Hemmat Esfe, Mohammad & Safaei, Mohammad Reza & Toghraie Semiromi, Davood & Jafari, Saeed & Kazi, S.N., 2014. "Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 150-168.
    7. Goodarzi, Marjan & D’Orazio, Annunziata & Keshavarzi, Ahmad & Mousavi, Sayedali & Karimipour, Arash, 2018. "Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, Two case studies: Pure natural ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 210-233.
    8. Toghraie, Davood & Karimipour, Arash & Safaei, Mohammad Reza & Goodarzi, Marjan & Alipour, Habibollah & Dahari, Mahidzal, 2016. "Investigation of rib's height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannelAuthor-Name: Akbari, Omid Ali," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 135-153.
    9. Safaei, Mohammad Reza & Karimipour, Arash & Abdollahi, Ali & Nguyen, Truong Khang, 2018. "The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 515-535.
    10. Khodabandeh, Erfan & Safaei, Mohammad Reza & Akbari, Soheil & Akbari, Omid Ali & Alrashed, Abdullah A.A.A., 2018. "Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: Geometric study," Renewable Energy, Elsevier, vol. 122(C), pages 1-16.
    11. Murshed, S.M. Sohel & Nieto de Castro, C.A., 2016. "Conduction and convection heat transfer characteristics of ethylene glycol based nanofluids – A review," Applied Energy, Elsevier, vol. 184(C), pages 681-695.
    12. Leong, K.Y. & Ku Ahmad, K.Z. & Ong, Hwai Chyuan & Ghazali, M.J. & Baharum, Azizah, 2017. "Synthesis and thermal conductivity characteristic of hybrid nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 868-878.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atul Bhattad & Vinay Atgur & Boggarapu Nageswar Rao & N. R. Banapurmath & T. M. Yunus Khan & Chandramouli Vadlamudi & Sanjay Krishnappa & A. M. Sajjan & R. Prasanna Shankara & N. H. Ayachit, 2023. "Review on Mono and Hybrid Nanofluids: Preparation, Properties, Investigation, and Applications in IC Engines and Heat Transfer," Energies, MDPI, vol. 16(7), pages 1-40, March.
    2. Peng, Yeping & Parsian, Amir & Khodadadi, Hossein & Akbari, Mohammad & Ghani, Kamal & Goodarzi, Marjan & Bach, Quang-Vu, 2020. "Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3 – Cu nanoparticles dispersed in ethy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    3. Xiaohong, Dai & Huajiang, Chen & Bagherzadeh, Seyed Amin & Shayan, Masoud & Akbari, Mohammad, 2020. "Statistical estimation the thermal conductivity of MWCNTs-SiO2/Water-EG nanofluid using the ridge regression method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    4. Ghazvini, Mahyar & Maddah, Heydar & Peymanfar, Reza & Ahmadi, Mohammad Hossein & Kumar, Ravinder, 2020. "Experimental evaluation and artificial neural network modeling of thermal conductivity of water based nanofluid containing magnetic copper nanoparticles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    5. Zarei, Amir & Karimipour, Arash & Meghdadi Isfahani, Amir Homayoon & Tian, Zhe, 2019. "Improve the performance of lattice Boltzmann method for a porous nanoscale transient flow by provide a new modified relaxation time equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Tian, Zhe & Arasteh, Hossein & Parsian, Amir & Karimipour, Arash & Safaei, Mohammad Reza & Nguyen, Truong Khang, 2019. "Estimate the shear rate & apparent viscosity of multi-phased non-Newtonian hybrid nanofluids via new developed Support Vector Machine method coupled with sensitivity analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    7. Wei, Li & Arasteh, Hossein & abdollahi, Ali & Parsian, Amir & Taghipour, Abdolmajid & Mashayekhi, Ramin & Tlili, Iskander, 2020. "Locally weighted moving regression: A non-parametric method for modeling nanofluid features of dynamic viscosity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karimipour, Arash & Bagherzadeh, Seyed Amin & Taghipour, Abdolmajid & Abdollahi, Ali & Safaei, Mohammad Reza, 2019. "A novel nonlinear regression model of SVR as a substitute for ANN to predict conductivity of MWCNT-CuO/water hybrid nanofluid based on empirical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 89-97.
    2. Bahrami, Mehrdad & Akbari, Mohammad & Bagherzadeh, Seyed Amin & Karimipour, Arash & Afrand, Masoud & Goodarzi, Marjan, 2019. "Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 159-168.
    3. Bagherzadeh, Seyed Amin & D’Orazio, Annunziata & Karimipour, Arash & Goodarzi, Marjan & Bach, Quang-Vu, 2019. "A novel sensitivity analysis model of EANN for F-MWCNTs–Fe3O4/EG nanofluid thermal conductivity: Outputs predicted analytically instead of numerically to more accuracy and less costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 406-415.
    4. Nafchi, Peyman Mirzakhani & Karimipour, Arash & Afrand, Masoud, 2019. "The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 1-18.
    5. Peng, Yeping & Parsian, Amir & Khodadadi, Hossein & Akbari, Mohammad & Ghani, Kamal & Goodarzi, Marjan & Bach, Quang-Vu, 2020. "Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3 – Cu nanoparticles dispersed in ethy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    6. Shahsavar, Amin & Bagherzadeh, Seyed Amin & Mahmoudi, Boshra & Hajizadeh, Ahmad & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Robust Weighted Least Squares Support Vector Regression algorithm to estimate the nanofluid thermal properties of water/graphene Oxide–Silicon carbide mixture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1418-1428.
    7. Alipour, Pedram & Toghraie, Davood & Karimipour, Arash, 2019. "Investigation the atomic arrangement and stability of the fluid inside a rough nanochannel in both presence and absence of different roughness by using of accurate nano scale simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 639-660.
    8. Najafi, Mohammad Javid & Naghavi, Sayed Mahdi & Toghraie, Davood, 2019. "Numerical simulation of flow in hydro turbines channel to improve its efficiency by using of Lattice Boltzmann Method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 390-408.
    9. Tian, Zhe & Arasteh, Hossein & Parsian, Amir & Karimipour, Arash & Safaei, Mohammad Reza & Nguyen, Truong Khang, 2019. "Estimate the shear rate & apparent viscosity of multi-phased non-Newtonian hybrid nanofluids via new developed Support Vector Machine method coupled with sensitivity analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    10. Zarei, Amir & Karimipour, Arash & Meghdadi Isfahani, Amir Homayoon & Tian, Zhe, 2019. "Improve the performance of lattice Boltzmann method for a porous nanoscale transient flow by provide a new modified relaxation time equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    11. Wei, Li & Arasteh, Hossein & abdollahi, Ali & Parsian, Amir & Taghipour, Abdolmajid & Mashayekhi, Ramin & Tlili, Iskander, 2020. "Locally weighted moving regression: A non-parametric method for modeling nanofluid features of dynamic viscosity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    12. Safaei, Mohammad Reza & Karimipour, Arash & Abdollahi, Ali & Nguyen, Truong Khang, 2018. "The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 515-535.
    13. Alsarraf, Jalal & Moradikazerouni, Alireza & Shahsavar, Amin & Afrand, Masoud & Salehipour, Hamzeh & Tran, Minh Duc, 2019. "Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 275-288.
    14. Rasti, Ehsan & Talebi, Farhad & Mazaheri, Kiumars, 2019. "Improvement of drag reduction prediction in viscoelastic pipe flows using proper low-Reynolds k-ε turbulence models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 412-422.
    15. Goodarzi, Marjan & D’Orazio, Annunziata & Keshavarzi, Ahmad & Mousavi, Sayedali & Karimipour, Arash, 2018. "Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, Two case studies: Pure natural ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 210-233.
    16. Alipour, Pedram & Toghraie, Davood & Karimipour, Arash & Hajian, Mehdi, 2019. "Modeling different structures in perturbed Poiseuille flow in a nanochannel by using of molecular dynamics simulation: Study the equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 13-30.
    17. Ahmadi Balootaki, Azam & Karimipour, Arash & Toghraie, Davood, 2018. "Nano scale lattice Boltzmann method to simulate the mixed convection heat transfer of air in a lid-driven cavity with an endothermic obstacle inside," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 681-701.
    18. Li, Chengwu & Zhao, Yuechao & Ai, Dihao & Wang, Qifei & Peng, Zhigao & Li, Yingjun, 2020. "Multi-component LBM-LES model of the air and methane flow in tunnels and its validation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    19. Afrouzi, Hamid Hassanzadeh & Ahmadian, Majid & Moshfegh, Abouzar & Toghraie, Davood & Javadzadegan, Ashkan, 2019. "Statistical analysis of pulsating non-Newtonian flow in a corrugated channel using Lattice-Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    20. Toghaniyan, Abolfazl & Zarringhalam, Majid & Akbari, Omid Ali & Sheikh Shabani, Gholamreza Ahmadi & Toghraie, Davood, 2018. "Application of lattice Boltzmann method and spinodal decomposition phenomenon for simulating two-phase thermal flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 673-689.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:521:y:2019:i:c:p:98-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.