IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3181-d373592.html
   My bibliography  Save this article

Optimum Electrical and Dielectric Performance of Multi-Walled Carbon Nanotubes Doped Disposed Transformer Oil

Author

Listed:
  • Nur Sabrina Suhaimi

    (Faculty of Engineering, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia)

  • Muhamad Faiz Md Din

    (Faculty of Engineering, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia)

  • Abdul Rashid Abdul Rahman

    (Faculty of Engineering, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia)

  • Mardhiah Hayati Abdul Hamid

    (Faculty of Engineering, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia)

  • Nur Aqilah Mohamad Amin

    (Faculty of Engineering, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia)

  • Wan Fathul Hakim Wan Zamri

    (Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Jianli Wang

    (Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong 2522, NSW, Australia)

Abstract

This paper intends to prepare a nanofluid sample by suspending Multi-walled Carbon Nanotubes (MWCNTs) at 0.005g/L concentration and analyze the behavior of electrical and dielectric properties based on the International Electrotechnical Commision test method. In order to validate the effectiveness of MWCNT nanofluid, alternating current breakdown voltage (BDV), negative polarity lightning impulse (LI), dielectric permittivity, dissipation factor (DF), DC resistivity and Raman structural measurement are executed accordingly. In the following, an analysis of the statistical distribution using the two-parameter Weibull distribution law of BDV and LI are evaluated at four experimental conditions to predict the probability of breakdown occurring at different percentages. Based on the observation, the MWCNT filler has a substantial effect in improving the BDV and LI characteristics of disposed mineral oil. The permittivity, DF and resistivity performance of MWCNT nanofluid from 25 °C to 90 °C also produces comparable and reliable performance as a fresh transformer oil. As for Raman structure, the revolution of transformer oil by doping MWCNT does not disrupt the original chemical structure of mineral oil. Hence, this study proves the improvement of the electrical and the behavior of dielectric properties and chemical structure of nanofluid, providing a huge contribution towards the development of insulating materials for transformer application.

Suggested Citation

  • Nur Sabrina Suhaimi & Muhamad Faiz Md Din & Abdul Rashid Abdul Rahman & Mardhiah Hayati Abdul Hamid & Nur Aqilah Mohamad Amin & Wan Fathul Hakim Wan Zamri & Jianli Wang, 2020. "Optimum Electrical and Dielectric Performance of Multi-Walled Carbon Nanotubes Doped Disposed Transformer Oil," Energies, MDPI, vol. 13(12), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3181-:d:373592
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3181/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3181/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nurul Izzatul Akma Katim & Mohd Taufiq Ishak & Nur Aqilah Mohamad Amin & Mardhiah Hayati Abdul Hamid & Khairol Amali Ahmad & Norhafiz Azis, 2018. "Lightning Breakdown Voltage Evaluation of Palm Oil and Coconut Oil as Transformer Oil under Quasi-Uniform Field Conditions," Energies, MDPI, vol. 11(10), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atul Bhattad & Vinay Atgur & Boggarapu Nageswar Rao & N. R. Banapurmath & T. M. Yunus Khan & Chandramouli Vadlamudi & Sanjay Krishnappa & A. M. Sajjan & R. Prasanna Shankara & N. H. Ayachit, 2023. "Review on Mono and Hybrid Nanofluids: Preparation, Properties, Investigation, and Applications in IC Engines and Heat Transfer," Energies, MDPI, vol. 16(7), pages 1-40, March.
    2. Nur Sabrina Suhaimi & Mohd Taufiq Ishak & Muhamad Faiz Md Din & Fakhroul Ridzuan Hashim & Abdul Rashid Abdul Rahman, 2022. "Raman Spectroscopy Characterization of Mineral Oil and Palm Oil with Added Multi-Walled Carbon Nanotube for Application in Oil-Filled Transformers," Energies, MDPI, vol. 15(4), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Zijia & Wang, Feipeng & Wang, Zhiqing & Li, Jian, 2021. "A critical review of plant-based insulating fluids for transformer: 30-year development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Das, Anu Kumar & Ch Shill, Dayal & Chatterjee, Saibal, 2022. "Coconut oil for utility transformers – Environmental safety and sustainability perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Nur Sabrina Suhaimi & Mohd Taufiq Ishak & Muhamad Faiz Md Din & Fakhroul Ridzuan Hashim & Abdul Rashid Abdul Rahman, 2022. "Raman Spectroscopy Characterization of Mineral Oil and Palm Oil with Added Multi-Walled Carbon Nanotube for Application in Oil-Filled Transformers," Energies, MDPI, vol. 15(4), pages 1-13, February.
    4. Mardhiah Hayati Abdul Hamid & Mohd Taufiq Ishak & Nur Sabrina Suhaimi & Jaafar Adnan & Nazrul Fariq Makmor & Nurul Izzatul Akma Katim & Rahisham Abd Rahman, 2021. "Lightning Impulse Breakdown Voltage of Rice Bran Oil for Transformer Application," Energies, MDPI, vol. 14(16), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3181-:d:373592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.