IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp1126-1148.html
   My bibliography  Save this article

Performance enhancement of solar energy systems using nanofluids: An updated review

Author

Listed:
  • Sahin, Ahmet Z.
  • Uddin, Mohammed Ayaz
  • Yilbas, Bekir S.
  • Al-Sharafi, Abdullah

Abstract

There are various techniques used to enhance the conversion of solar energy into useful forms. Use of nanofluids is one of the prominent techniques in the active research of enhancing the energy utilization. In this paper, an updated review is carried out for various recent studies that illustrate the use of nanofluids in different types of solar collectors for improvement of their performance. In addition, some suggestions are made in relation to the future research directions in view of the prevailing challenges using nanofluids in solar energy systems. It has been witnessed that proper dispersion of nanoparticles is a key issue for adequate solar absorption. Improvement of solar collector performance agrees until certain limit of nanofluid volume fraction above which it can end up with adverse results. Proper combination of particle size, pH value and adequate dispersion of nanoparticles results in efficiency increment. Among all possible nanoparticles carbon nanotubes result in larger enhancement when compared to rest, in general. It is also noted that the optical properties of nanoparticles play a key role in absorption, extinction coefficient and the penetration depth of the solar radiation in the nanofluids.

Suggested Citation

  • Sahin, Ahmet Z. & Uddin, Mohammed Ayaz & Yilbas, Bekir S. & Al-Sharafi, Abdullah, 2020. "Performance enhancement of solar energy systems using nanofluids: An updated review," Renewable Energy, Elsevier, vol. 145(C), pages 1126-1148.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1126-1148
    DOI: 10.1016/j.renene.2019.06.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119309425
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmadlouydarab, Majid & Anari, Tahereh Dana & Akbarzadeh, Alireza, 2022. "Experimental study on cylindrical and flat plate solar collectors’ thermal efficiency comparison," Renewable Energy, Elsevier, vol. 190(C), pages 848-864.
    2. Vera-Medina, J. & Fernandez-Peruchena, C. & Guasumba, J. & Lillo-Bravo, I., 2021. "Performance analysis of factory-made thermosiphon solar water heating systems," Renewable Energy, Elsevier, vol. 164(C), pages 1215-1229.
    3. Qin, Caiyan & Zhu, Qunzhi & Li, Xiaoke & Sun, Chunlei & Chen, Meijie & Wu, Xiaohu, 2022. "Slotted metallic nanospheres with both electric and magnetic resonances for solar thermal conversion," Renewable Energy, Elsevier, vol. 197(C), pages 79-88.
    4. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Sun, Cheng & Chwieduk, Dorota & Kalogirou, Soteris A., 2021. "Optimization of the electricity/heat production of a PV/T system based on spectral splitting with Ag nanofluid," Renewable Energy, Elsevier, vol. 180(C), pages 30-39.
    5. Fatih Selimefendigil & Hakan F. Oztop & Mikhail A. Sheremet, 2021. "Thermoelectric Generation with Impinging Nano-Jets," Energies, MDPI, vol. 14(2), pages 1-24, January.
    6. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Atul Bhattad & Vinay Atgur & Boggarapu Nageswar Rao & N. R. Banapurmath & T. M. Yunus Khan & Chandramouli Vadlamudi & Sanjay Krishnappa & A. M. Sajjan & R. Prasanna Shankara & N. H. Ayachit, 2023. "Review on Mono and Hybrid Nanofluids: Preparation, Properties, Investigation, and Applications in IC Engines and Heat Transfer," Energies, MDPI, vol. 16(7), pages 1-40, March.
    8. Lioua Kolsi & Fatih Selimefendigil & Lotfi Ben Said & Abdelhakim Mesloub & Faisal Alresheedi, 2021. "Forced Convection of Non-Newtonian Nanofluid Flow over a Backward Facing Step with Simultaneous Effects of Using Double Rotating Cylinders and Inclined Magnetic Field," Mathematics, MDPI, vol. 9(23), pages 1-21, November.
    9. L, Chilambarasan & Thangarasu, Vinoth & Ramasamy, Prakash, 2024. "Solar flat plate collector's heat transfer enhancement using grooved tube configuration with alumina nanofluids: Prediction of outcomes through artificial neural network modeling," Energy, Elsevier, vol. 289(C).
    10. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Zhang, Jizhe, 2021. "Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Joseph, Albin & Sreekumar, Sreehari & Thomas, Shijo, 2020. "Energy and exergy analysis of SiO2/Ag-CuO plasmonic nanofluid on direct absorption parabolic solar collector," Renewable Energy, Elsevier, vol. 162(C), pages 1655-1664.
    12. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    13. Diniz, Filipe L.J. & Vital, Caio V.P. & Gómez-Malagón, Luis A., 2022. "Parametric analysis of energy and exergy efficiencies of a hybrid PV/T system containing metallic nanofluids," Renewable Energy, Elsevier, vol. 186(C), pages 51-65.
    14. Ambreen, Tehmina & Kim, Man-Hoe, 2020. "Influence of particle size on the effective thermal conductivity of nanofluids: A critical review," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1126-1148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.