Influence of particle size on the effective thermal conductivity of nanofluids: A critical review
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2020.114684
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Loni, R. & Askari Asli-ardeh, E. & Ghobadian, B. & Kasaeian, A.B. & Gorjian, Sh., 2017. "Thermodynamic analysis of a solar dish receiver using different nanofluids," Energy, Elsevier, vol. 133(C), pages 749-760.
- Loni, Reyhaneh & Asli-Ardeh, E. Askari & Ghobadian, B. & Kasaeian, A.B. & Bellos, Evangelos, 2018. "Energy and exergy investigation of alumina/oil and silica/oil nanofluids in hemispherical cavity receiver: Experimental Study," Energy, Elsevier, vol. 164(C), pages 275-287.
- Abadeh, Abazar & Rejeb, Oussama & Sardarabadi, Mohammad & Menezo, Christophe & Passandideh-Fard, Mohammad & Jemni, Abdelmajid, 2018. "Economic and environmental analysis of using metal-oxides/water nanofluid in photovoltaic thermal systems (PVTs)," Energy, Elsevier, vol. 159(C), pages 1234-1243.
- Jack P. C. Kleijnen, 2015.
"Response Surface Methodology,"
International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104,
Springer.
- Kleijnen, Jack P.C., 2014. "Response Surface Methodology," Discussion Paper 2014-013, Tilburg University, Center for Economic Research.
- Kleijnen, Jack P.C., 2014. "Response Surface Methodology," Other publications TiSEM 7f9f17ee-db7f-4041-a686-d, Tilburg University, School of Economics and Management.
- Potenza, Marco & Milanese, Marco & Colangelo, Gianpiero & de Risi, Arturo, 2017. "Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid," Applied Energy, Elsevier, vol. 203(C), pages 560-570.
- Kim, Hyeongmin & Ham, Jeonggyun & Park, Chasik & Cho, Honghyun, 2016. "Theoretical investigation of the efficiency of a U-tube solar collector using various nanofluids," Energy, Elsevier, vol. 94(C), pages 497-507.
- Saidur, R. & Leong, K.Y. & Mohammad, H.A., 2011. "A review on applications and challenges of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1646-1668, April.
- Mohammad Zadeh, P. & Sokhansefat, T. & Kasaeian, A.B. & Kowsary, F. & Akbarzadeh, A., 2015. "Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid," Energy, Elsevier, vol. 82(C), pages 857-864.
- Sahin, Ahmet Z. & Uddin, Mohammed Ayaz & Yilbas, Bekir S. & Al-Sharafi, Abdullah, 2020. "Performance enhancement of solar energy systems using nanofluids: An updated review," Renewable Energy, Elsevier, vol. 145(C), pages 1126-1148.
- Dhinesh Kumar, D. & Valan Arasu, A., 2018. "A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1669-1689.
- Al-Waeli, Ali H.A. & Chaichan, Miqdam T. & Kazem, Hussein A. & Sopian, K. & Ibrahim, Adnan & Mat, Sohif & Ruslan, Mohd Hafidz, 2018. "Comparison study of indoor/outdoor experiments of a photovoltaic thermal PV/T system containing SiC nanofluid as a coolant," Energy, Elsevier, vol. 151(C), pages 33-44.
- Sardarabadi, Mohammad & Passandideh-Fard, Mohammad & Zeinali Heris, Saeed, 2014. "Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units)," Energy, Elsevier, vol. 66(C), pages 264-272.
- Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
- Colangelo, Gianpiero & Favale, Ernani & de Risi, Arturo & Laforgia, Domenico, 2012. "Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications," Applied Energy, Elsevier, vol. 97(C), pages 828-833.
- Bellos, Evangelos & Tzivanidis, Christos, 2017. "Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors," Renewable Energy, Elsevier, vol. 114(PB), pages 1376-1393.
- Ambreen, Tehmina & Kim, Man-Hoe, 2018. "Heat transfer and pressure drop correlations of nanofluids: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 564-583.
- Al-Shamani, Ali Najah & Yazdi, Mohammad H. & Alghoul, M.A. & Abed, Azher M. & Ruslan, M.H. & Mat, Sohif & Sopian, K., 2014. "Nanofluids for improved efficiency in cooling solar collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 348-367.
- Bellos, E. & Tzivanidis, C. & Antonopoulos, K.A. & Gkinis, G., 2016. "Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube," Renewable Energy, Elsevier, vol. 94(C), pages 213-222.
- Che Sidik, Nor Azwadi & Mahmud Jamil, Muhammad & Aziz Japar, Wan Mohd Arif & Muhammad Adamu, Isa, 2017. "A review on preparation methods, stability and applications of hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1112-1122.
- Yousefi, Tooraj & Veysi, Farzad & Shojaeizadeh, Ehsan & Zinadini, Sirus, 2012. "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 39(1), pages 293-298.
- Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
- Azmi, W.H. & Sharma, K.V. & Mamat, Rizalman & Najafi, G. & Mohamad, M.S., 2016. "The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1046-1058.
- Tawfik, Mohamed M., 2017. "Experimental studies of nanofluid thermal conductivity enhancement and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1239-1253.
- Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mukhamad Faeshol Umam & Md. Hasanuzzaman & Nasrudin Abd Rahim, 2022. "Global Advancement of Nanofluid-Based Sheet and Tube Collectors for a Photovoltaic Thermal System," Energies, MDPI, vol. 15(15), pages 1-37, August.
- Le Sun & Jiafeng Geng & Kaijun Dong & Qin Sun, 2024. "The Applications and Challenges of Nanofluids as Coolants in Data Centers: A Review," Energies, MDPI, vol. 17(13), pages 1-29, June.
- Fatih Selimefendigil & Hakan F. Oztop & Mikhail A. Sheremet, 2021. "Thermoelectric Generation with Impinging Nano-Jets," Energies, MDPI, vol. 14(2), pages 1-24, January.
- Zhou, Chenyang & Zhang, Chen & Zhang, Teng & Zhang, Jingfeng & Ma, Pengfei & Yu, Yunsong & Zhang, Zaoxiao & Wang, Geoff G.X., 2023. "Single-atom solutions promote carbon dioxide capture," Applied Energy, Elsevier, vol. 332(C).
- Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Muzamil Hussain & Syed Khawar Hussain Shah & Uzair Sajjad & Naseem Abbas & Ahsan Ali, 2022. "Recent Developments in Optical and Thermal Performance of Direct Absorption Solar Collectors," Energies, MDPI, vol. 15(19), pages 1-23, September.
- Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
- Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Miqdam T. Chaichan & Hussein A. Kazem & Moafaq K. S. Al-Ghezi & Ali H. A. Al-Waeli & Ali J. Ali & Kamaruzzaman Sopian & Abdul Amir H. Kadhum & Wan Nor Roslam Wan Isahak & Mohd S. Takriff & Ahmed A. Al, 2023. "Effect of Different Preparation Parameters on the Stability and Thermal Conductivity of MWCNT-Based Nanofluid Used for Photovoltaic/Thermal Cooling," Sustainability, MDPI, vol. 15(9), pages 1-24, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Abu Shadate Faisal Mahamude & Muhamad Kamal Kamarulzaman & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Rosli Abu Bakar & Talal Yusaf & Sivarao Subramanion & Belal , 2022. "A Comprehensive Review on Efficiency Enhancement of Solar Collectors Using Hybrid Nanofluids," Energies, MDPI, vol. 15(4), pages 1-26, February.
- Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
- Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Zhang, Jizhe, 2021. "Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2018. "Enhancing the performance of parabolic trough collectors using nanofluids and turbulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 358-375.
- Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
- Ebrahimi-Moghadam, Amir & Mohseni-Gharyehsafa, Behnam & Farzaneh-Gord, Mahmood, 2018. "Using artificial neural network and quadratic algorithm for minimizing entropy generation of Al2O3-EG/W nanofluid flow inside parabolic trough solar collector," Renewable Energy, Elsevier, vol. 129(PA), pages 473-485.
- Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
- Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2017. "Multi-criteria evaluation of parabolic trough collector with internally finned absorbers," Applied Energy, Elsevier, vol. 205(C), pages 540-561.
- Bellos, Evangelos & Tzivanidis, Christos, 2017. "Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors," Renewable Energy, Elsevier, vol. 114(PB), pages 1376-1393.
- Ambreen, Tehmina & Kim, Man-Hoe, 2018. "Heat transfer and pressure drop correlations of nanofluids: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 564-583.
- Mehrali, Mohammad & Ghatkesar, Murali Krishna & Pecnik, Rene, 2018. "Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids," Applied Energy, Elsevier, vol. 224(C), pages 103-115.
- Bhalla, Vishal & Tyagi, Himanshu, 2018. "Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: A review on optical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 12-42.
- Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Zhao, Dan-dan & Xu, Jing-wen & Jin, Yi-hao, 2021. "Comparative study of heat transfer enhancement using different fins in semi-circular absorber tube for large-aperture trough solar concentrator," Renewable Energy, Elsevier, vol. 169(C), pages 1229-1241.
- Peng, Hao & Guo, Wenhua & Li, Meilin, 2020. "Thermal-hydraulic and thermodynamic performances of liquid metal based nanofluid in parabolic trough solar receiver tube," Energy, Elsevier, vol. 192(C).
- Fudholi, Ahmad & Razali, Nur Farhana Mohd & Yazdi, Mohammad H. & Ibrahim, Adnan & Ruslan, Mohd Hafidz & Othman, Mohd Yusof & Sopian, Kamaruzzaman, 2019. "TiO2/water-based photovoltaic thermal (PVT) collector: Novel theoretical approach," Energy, Elsevier, vol. 183(C), pages 305-314.
- Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
More about this item
Keywords
Nanofluid; Nanoparticle size; Effective thermal conductivity; Energy efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920301963. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.