IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3086-d1109926.html
   My bibliography  Save this article

Power-Load Forecasting Model Based on Informer and Its Application

Author

Listed:
  • Hongbin Xu

    (School of Information Engineering, Nanchang University, Nanchang 330031, China)

  • Qiang Peng

    (School of Information Engineering, Nanchang University, Nanchang 330031, China)

  • Yuhao Wang

    (School of Information Engineering, Nanchang University, Nanchang 330031, China
    Shangrao Normal University, Shangrao 334001, China)

  • Zengwen Zhan

    (State Grid Nanchang Power Supply Company, Nanchang 330031, China)

Abstract

Worldwide, the demand for power load forecasting is increasing. A multi-step power-load forecasting model is established based on Informer, which takes the historical load data as the input to realize the prediction of the power load in the future. The constructed model abandons the common recurrent neural network to deal with time-series problems, and uses the seq2seq structure with sparse self-attention mechanism as the main body, supplemented by specific input and output modules to deal with the long-range relationship in the time series, and makes effective use of the parallel advantages of the self-attention mechanism, so as to improve the prediction accuracy and prediction efficiency. The model is trained, verified and tested by using the power-load dataset of the Taoyuan substation in Nanchang. Compared with RNN, LSTM and LSTM with the attention mechanism and other common models based on a cyclic neural network, the results show that the prediction accuracy and efficiency of the Informer-based power-load forecasting model in 1440 time steps have certain advantages over cyclic neural network models.

Suggested Citation

  • Hongbin Xu & Qiang Peng & Yuhao Wang & Zengwen Zhan, 2023. "Power-Load Forecasting Model Based on Informer and Its Application," Energies, MDPI, vol. 16(7), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3086-:d:1109926
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3086/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3086/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Che, JinXing & Wang, JianZhou, 2014. "Short-term load forecasting using a kernel-based support vector regression combination model," Applied Energy, Elsevier, vol. 132(C), pages 602-609.
    2. Lindberg, K.B. & Seljom, P. & Madsen, H. & Fischer, D. & Korpås, M., 2019. "Long-term electricity load forecasting: Current and future trends," Utilities Policy, Elsevier, vol. 58(C), pages 102-119.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zijing Dong & Boyi Fan & Fan Li & Xuezhi Xu & Hong Sun & Weiwei Cao, 2023. "TCN-Informer-Based Flight Trajectory Prediction for Aircraft in the Approach Phase," Sustainability, MDPI, vol. 15(23), pages 1-20, November.
    2. Xinjian Xiang & Tianshun Yuan & Guangke Cao & Yongping Zheng, 2024. "Short-Term Electric Load Forecasting Based on Signal Decomposition and Improved TCN Algorithm," Energies, MDPI, vol. 17(8), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Bosisio & Matteo Moncecchi & Andrea Morotti & Marco Merlo, 2021. "Machine Learning and GIS Approach for Electrical Load Assessment to Increase Distribution Networks Resilience," Energies, MDPI, vol. 14(14), pages 1-23, July.
    2. Burleyson, Casey D. & Rahman, Aowabin & Rice, Jennie S. & Smith, Amanda D. & Voisin, Nathalie, 2021. "Multiscale effects masked the impact of the COVID-19 pandemic on electricity demand in the United States," Applied Energy, Elsevier, vol. 304(C).
    3. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    4. Lü, Xiaoshu & Lu, Tao & Kibert, Charles J. & Viljanen, Martti, 2015. "Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach," Applied Energy, Elsevier, vol. 144(C), pages 261-275.
    5. Yang, YouLong & Che, JinXing & Li, YanYing & Zhao, YanJun & Zhu, SuLing, 2016. "An incremental electric load forecasting model based on support vector regression," Energy, Elsevier, vol. 113(C), pages 796-808.
    6. Arash Moradzadeh & Sahar Zakeri & Maryam Shoaran & Behnam Mohammadi-Ivatloo & Fazel Mohammadi, 2020. "Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    7. Ahmad, Tanveer & Huanxin, Chen & Zhang, Dongdong & Zhang, Hongcai, 2020. "Smart energy forecasting strategy with four machine learning models for climate-sensitive and non-climate sensitive conditions," Energy, Elsevier, vol. 198(C).
    8. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P. & Bouzerdoum, A., 2017. "Short-term electricity demand forecasting using autoregressive based time varying model incorporating representative data adjustment," Applied Energy, Elsevier, vol. 205(C), pages 790-801.
    9. Rafik Nafkha & Tomasz Ząbkowski & Krzysztof Gajowniczek, 2021. "Deep Learning-Based Approaches to Optimize the Electricity Contract Capacity Problem for Commercial Customers," Energies, MDPI, vol. 14(8), pages 1-17, April.
    10. Moral-Carcedo, Julián & Pérez-García, Julián, 2017. "Integrating long-term economic scenarios into peak load forecasting: An application to Spain," Energy, Elsevier, vol. 140(P1), pages 682-695.
    11. Singh, Sarbjit & Parmar, Kulwinder Singh & Makkhan, Sidhu Jitendra Singh & Kaur, Jatinder & Peshoria, Shruti & Kumar, Jatinder, 2020. "Study of ARIMA and least square support vector machine (LS-SVM) models for the prediction of SARS-CoV-2 confirmed cases in the most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    12. Kakkar, Riya & Agrawal, Smita & Tanwar, Sudeep, 2024. "A systematic survey on demand response management schemes for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    13. Zhang, Yuejuan & Li, Xian-Xiang & Xin, Rui & Chew, Lup Wai & Liu, Chun-Ho, 2024. "Applicability of data-driven methods in modeling electricity demand-climate nexus: A tale of Singapore and Hong Kong," Energy, Elsevier, vol. 300(C).
    14. Hu, Yi & Qu, Boyang & Wang, Jie & Liang, Jing & Wang, Yanli & Yu, Kunjie & Li, Yaxin & Qiao, Kangjia, 2021. "Short-term load forecasting using multimodal evolutionary algorithm and random vector functional link network based ensemble learning," Applied Energy, Elsevier, vol. 285(C).
    15. Feng, Yonghan & Ryan, Sarah M., 2016. "Day-ahead hourly electricity load modeling by functional regression," Applied Energy, Elsevier, vol. 170(C), pages 455-465.
    16. Ignacio Mauleón, 2021. "Aggregated World Energy Demand Projections: Statistical Assessment," Energies, MDPI, vol. 14(15), pages 1-13, July.
    17. Tongxiang Liu & Yu Jin & Yuyang Gao, 2019. "A New Hybrid Approach for Short-Term Electric Load Forecasting Applying Support Vector Machine with Ensemble Empirical Mode Decomposition and Whale Optimization," Energies, MDPI, vol. 12(8), pages 1-20, April.
    18. Wang, Hu & Mao, Lei & Zhang, Heng & Wu, Qiang, 2024. "Multi-prediction of electric load and photovoltaic solar power in grid-connected photovoltaic system using state transition method," Applied Energy, Elsevier, vol. 353(PB).
    19. Khoshrou, Abdolrahman & Pauwels, Eric J., 2019. "Short-term scenario-based probabilistic load forecasting: A data-driven approach," Applied Energy, Elsevier, vol. 238(C), pages 1258-1268.
    20. Fu, Xin & Zeng, Xiao-Jun & Feng, Pengpeng & Cai, Xiuwen, 2018. "Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China," Energy, Elsevier, vol. 165(PB), pages 76-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3086-:d:1109926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.