Short-Term Electric Load Forecasting Based on Signal Decomposition and Improved TCN Algorithm
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mobarak Abumohsen & Amani Yousef Owda & Majdi Owda, 2023. "Electrical Load Forecasting Using LSTM, GRU, and RNN Algorithms," Energies, MDPI, vol. 16(5), pages 1-31, February.
- Hongbin Xu & Qiang Peng & Yuhao Wang & Zengwen Zhan, 2023. "Power-Load Forecasting Model Based on Informer and Its Application," Energies, MDPI, vol. 16(7), pages 1-14, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Omar Farhan Al-Hardanee & Hüseyin Demirel, 2024. "Hydropower Station Status Prediction Using RNN and LSTM Algorithms for Fault Detection," Energies, MDPI, vol. 17(22), pages 1-23, November.
- Akash Mahajan & Srijita Das & Wencong Su & Van-Hai Bui, 2024. "Bayesian-Neural-Network-Based Approach for Probabilistic Prediction of Building-Energy Demands," Sustainability, MDPI, vol. 16(22), pages 1-21, November.
- Huiqun Yu & Haoyi Sun & Yueze Li & Chunmei Xu & Chenkun Du, 2024. "Enhanced Short-Term Load Forecasting: Error-Weighted and Hybrid Model Approach," Energies, MDPI, vol. 17(21), pages 1-22, October.
- Tulin Guzel & Hakan Cinar & Mehmet Nabi Cenet & Kamil Doruk Oguz & Ahmet Yucekaya & Mustafa Hekimoglu, 2023. "A Framework to Forecast Electricity Consumption of Meters using Automated Ranking and Data Preprocessing," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 179-193, September.
- Ramos, Paulo Vitor B. & Villela, Saulo Moraes & Silva, Walquiria N. & Dias, Bruno H., 2023. "Residential energy consumption forecasting using deep learning models," Applied Energy, Elsevier, vol. 350(C).
- Serrano-Arévalo, Tania Itzel & López-Flores, Francisco Javier & Raya-Tapia, Alma Yunuen & Ramírez-Márquez, César & Ponce-Ortega, José María, 2023. "Optimal expansion for a clean power sector transition in Mexico based on predicted electricity demand using deep learning scheme," Applied Energy, Elsevier, vol. 348(C).
- Zhuoqun Zou & Jing Wang & Ning E & Can Zhang & Zhaocai Wang & Enyu Jiang, 2023. "Short-Term Power Load Forecasting: An Integrated Approach Utilizing Variational Mode Decomposition and TCN–BiGRU," Energies, MDPI, vol. 16(18), pages 1-17, September.
- Aydin Zaboli & Swetha Rani Kasimalla & Kuchan Park & Younggi Hong & Junho Hong, 2024. "A Comprehensive Review of Behind-the-Meter Distributed Energy Resources Load Forecasting: Models, Challenges, and Emerging Technologies," Energies, MDPI, vol. 17(11), pages 1-27, May.
- Zijing Dong & Boyi Fan & Fan Li & Xuezhi Xu & Hong Sun & Weiwei Cao, 2023. "TCN-Informer-Based Flight Trajectory Prediction for Aircraft in the Approach Phase," Sustainability, MDPI, vol. 15(23), pages 1-20, November.
- Serdal Atiç & Ercan Izgi, 2024. "Smart Reserve Planning Using Machine Learning Methods in Power Systems with Renewable Energy Sources," Sustainability, MDPI, vol. 16(12), pages 1-20, June.
- George Kandilogiannakis & Paris Mastorocostas & Athanasios Voulodimos & Constantinos Hilas, 2023. "Short-Term Load Forecasting of the Greek Power System Using a Dynamic Block-Diagonal Fuzzy Neural Network," Energies, MDPI, vol. 16(10), pages 1-20, May.
More about this item
Keywords
electric load forecasting; forecasting; complete ensemble empirical mode decomposition with adaptive noise; temporal convolutional network; soft thresholding temporal convolutional network; slime mould algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1815-:d:1373145. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.